The Role of Retained Austenite in Tempered Martensite Embrittlement of 4340 and 300-M Steels Investigated through Rapid Tempering

被引:12
作者
Euser, Virginia K. [1 ]
Williamson, Don L. [2 ]
Findley, Kip O. [3 ]
Clarke, Amy J. [3 ]
Speer, John G. [3 ]
机构
[1] Los Alamos Natl Lab, Dynam & Quasi Stat Loading Expt Team, POB 1663, Los Alamos, NM 87545 USA
[2] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
[3] Colorado Sch Mines, George S Ansell Dept Met & Mat Engn, Golden, CO 80401 USA
关键词
steel; tempered martensite embrittlement; retained austenite; rapid tempering; impact toughness; MECHANICAL-PROPERTIES; CARBON; TEMPERATURE; MOSSBAUER; STABILITY; EVOLUTION;
D O I
10.3390/met11091349
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Tempered martensite embrittlement (TME) is investigated in two medium carbon, high strength steels, 4340 (low silicon) and 300-M (high silicon), via rapid (1, 10, or 100 s) and conventional (3600 s) tempering. Rapid tempering of 4340 diminishes the depth of the TME toughness trough, where improvements in impact toughness correspond to the suppression of retained austenite decomposition. In 300-M, retained austenite decomposition is suppressed to an even greater extent by rapid tempering. While toughness improves overall after rapid tempering, TME severity remains consistent in 300-M across the tempering conditions examined. Through interrupted tensile tests, it was found that the 300-M conditions that exhibit TME are associated with mechanically unstable retained austenite. Unstable retained austenite is shown to mechanically transform early in the deformation process, presumably resulting in fresh martensite adjacent to interlath cementite that ultimately contributes to TME. The present results emphasize the role of both the thermal decomposition and mechanical transformation of retained austenite in the manifestation of TME.
引用
收藏
页数:12
相关论文
共 34 条
[1]  
ALLTEN AG, 1953, T AM SOC METAL, V45, P498
[2]  
[Anonymous], 2013, STANDARD TEST METHOD, P1, DOI [10.1520/E0096, DOI 10.1520/E0096, DOI 10.1520/D1238-13]
[3]  
ASTM International, 1982, STAND METH NOTC BAR, V552
[4]  
Bhadeshia H. K. D. H., 1979, Metal Science, V13, P325
[5]  
Chandler H.E., 1996, HEAT TREATERS GUIDE
[6]   LATTICE-PARAMETERS OF IRON-CARBON AND IRON-NITROGEN MARTENSITES AND AUSTENITES [J].
CHENG, L ;
BOTTGER, A ;
DEKEIJSER, TH ;
MITTEMEIJER, EJ .
SCRIPTA METALLURGICA ET MATERIALIA, 1990, 24 (03) :509-514
[7]   Perspectives on Quenching and Tempering 4340 Steel [J].
Clarke, A. J. ;
Klemm-Toole, J. ;
Clarke, K. D. ;
Coughlin, D. R. ;
Pierce, D. T. ;
Euser, V. K. ;
Poplawsky, J. D. ;
Clausen, B. ;
Brown, D. ;
Almer, J. ;
Gibbs, P. J. ;
Alexander, D. J. ;
Field, R. D. ;
Williamson, D. L. ;
Speer, J. G. ;
Krauss, G. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2020, 51 (10) :4984-5005
[8]   Atomic and nano scale chemical and structural changes in quenched and tempered 4340 steel [J].
Clarke, A. J. ;
Miller, M. K. ;
Field, R. D. ;
Coughlin, D. R. ;
Gibbs, P. J. ;
Clarke, K. D. ;
Alexander, D. J. ;
Powers, K. A. ;
Papin, P. A. ;
Krauss, G. .
ACTA MATERIALIA, 2014, 77 :17-27
[9]   Rapid Tempering: Opportunities and Challenges [J].
Euser, V. K. ;
Clarke, A. J. ;
Speer, J. G. .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2020, 29 (07) :4155-4161
[10]   Effects of Short-Time Tempering on Impact Toughness, Strength, and Phase Evolution of 4340 Steel Within the Tempered Martensite Embrittlement Regime [J].
Euser, V. K. ;
Williamson, D. L. ;
Clarke, K. D. ;
Findley, K. O. ;
Speer, J. G. ;
Clarke, A. J. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2019, 50A (08) :3654-3662