Large-time asymptotics for a matrix spin drift-diffusion model

被引:1
作者
Holzinger, Philipp [1 ]
Jungel, Ansgar [1 ]
机构
[1] Vienna Univ Technol, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
Spin-polarized transport in semiconductors; Drift-diffusion equations; Density matrix; Exponential decay; Large-time asymptotics; Free energy; POLARIZED TRANSPORT; ELECTRON-TRANSPORT; CARRIER TRANSPORT; BASIC EQUATIONS; BEHAVIOR; EXISTENCE; UNIQUENESS;
D O I
10.1016/j.jmaa.2020.123887
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The large-time asymptotics of the density matrix solving a drift-diffusion-Poisson model for the spin-polarized electron transport in semiconductors is proved. The equations are analyzed in a bounded domain with initial and Dirichlet boundary conditions. If the relaxation time is sufficiently small and the boundary data is close to the equilibrium state, the density matrix converges exponentially fast to the spinless near-equilibrium steady state. The proof is based on a reformulation of the matrix-valued cross-diffusion equations using spin-up and spin-down densities as well as the perpendicular component of the spin-vector density, which removes the cross-diffusion terms. Key elements of the proof are time-uniform positive lower and upper bounds for the spin-up and spin-down densities, derived from the De Giorgi-Moser iteration method, and estimates of the relative free energy for the spin-up and spin-down densities. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 42 条
  • [1] A three-dimensional spin-diffusion model for micromagnetics
    Abert, Claas
    Ruggeri, Michele
    Bruckner, Florian
    Vogler, Christoph
    Hrkac, Gino
    Praetorius, Dirk
    Suess, Dieter
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [3] Alikakos N. D., 1979, Comm. Partial Differential Equations, V4, P827, DOI DOI 10.1080/03605307908820113
  • [4] [Anonymous], 2008, ADV MATH SCI APPL
  • [5] On large time asymptotics for drift-diffusion-Poisson systems
    Arnold, A
    Markowich, P
    Toscani, G
    [J]. TRANSPORT THEORY AND STATISTICAL PHYSICS, 2000, 29 (3-5): : 571 - 581
  • [6] NUMERICAL STUDY OF A QUANTUM-DIFFUSIVE SPIN MODEL FOR TWO-DIMENSIONAL ELECTRON GASES
    Barletti, Luigi
    Mehats, Florian
    Negulescu, Claudia
    Possanner, Stefan
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (06) : 1347 - 1378
  • [7] Quantum drift-diffusion modeling of spin transport in nanostructures
    Barletti, Luigi
    Mehats, Florian
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (05)
  • [8] SPIN-FLIP SCATTERING TIMES IN SEMICONDUCTOR QUANTUM-WELLS
    BASTARD, G
    FERREIRA, R
    [J]. SURFACE SCIENCE, 1992, 267 (1-3) : 335 - 341
  • [9] A note on the long time behavior for the drift-diffusion-Poisson system
    Ben Abdallah, N
    Méhats, F
    Vauchelet, N
    [J]. COMPTES RENDUS MATHEMATIQUE, 2004, 339 (10) : 683 - 688
  • [10] Long time behavior of solutions to Nernst-Planck and Debye-Huckel drift-diffusion systems
    Biler, P
    Dolbeault, J
    [J]. ANNALES HENRI POINCARE, 2000, 1 (03): : 461 - 472