Multivariate tempered stable random fields

被引:1
作者
Kremer, D. [1 ]
Scheffler, H. -P. [1 ]
机构
[1] Univ Siegen, Dept Math, D-57068 Siegen, Germany
关键词
Tempered stable distributions; Independently scattered random; measures; Stochastic integrals; Tangent fields; MODELS;
D O I
10.1016/j.jmaa.2021.125347
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multivariate tempered stable random measures (ISRMs) are constructed and their corresponding space of integrable functions is characterized in terms of a quasi-norm utilizing the so-called Rosinski measure of a tempered stable law. In the special case of exponential tempered ISRMs operator-fractional tempered stable random fields are presented by a moving-average and a harmonizable representation, respectively. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:25
相关论文
共 32 条
[11]   Tangent fields and the local structure of random fields [J].
Falconer, KJ .
JOURNAL OF THEORETICAL PROBABILITY, 2002, 15 (03) :731-750
[12]   Finite time ruin probabilities for tempered stable insurance risk processes [J].
Griffin, Philip S. ;
Maller, Ross A. ;
Roberts, Dale .
INSURANCE MATHEMATICS & ECONOMICS, 2013, 53 (02) :478-489
[13]   Mortality modelling with Levy processes [J].
Hainaut, Donatien ;
Devolder, Pierre .
INSURANCE MATHEMATICS & ECONOMICS, 2008, 42 (01) :409-418
[14]   SURVIVAL MODELS FOR HETEROGENEOUS POPULATIONS DERIVED FROM STABLE-DISTRIBUTIONS [J].
HOUGAARD, P .
BIOMETRIKA, 1986, 73 (02) :387-396
[15]   The incomplete gamma functions [J].
Jameson, G. J. O. .
MATHEMATICAL GAZETTE, 2016, 100 (548) :298-306
[16]  
Kim Y.S., 2009, Risk Assessment, P77
[17]   Operator-stable and operator-self-similar random fields [J].
Kremer, D. ;
Scheffler, H. -P. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (10) :4082-4107
[18]   Multi operator-stable random measures and fields [J].
Kremer, Dustin ;
Scheffler, Hans-Peter .
STOCHASTIC MODELS, 2019, 35 (04) :429-468
[19]   Multivariate stochastic integrals with respect to independently scattered random measures on δ-rings [J].
Kremer, Dustin ;
Scheffler, Hans-Peter .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2019, 95 (1-2) :39-66
[20]   Exponential stock models driven by tempered stable processes [J].
Kuechler, Uwe ;
Tappe, Stefan .
JOURNAL OF ECONOMETRICS, 2014, 181 (01) :53-63