Multivariate tempered stable random fields

被引:1
作者
Kremer, D. [1 ]
Scheffler, H. -P. [1 ]
机构
[1] Univ Siegen, Dept Math, D-57068 Siegen, Germany
关键词
Tempered stable distributions; Independently scattered random; measures; Stochastic integrals; Tangent fields; MODELS;
D O I
10.1016/j.jmaa.2021.125347
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multivariate tempered stable random measures (ISRMs) are constructed and their corresponding space of integrable functions is characterized in terms of a quasi-norm utilizing the so-called Rosinski measure of a tempered stable law. In the special case of exponential tempered ISRMs operator-fractional tempered stable random fields are presented by a moving-average and a harmonizable representation, respectively. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:25
相关论文
共 32 条
[1]  
Aalen OO, 1992, Ann Appl Probab, V4, P951
[2]  
[Anonymous], 1994, STABLE NONGAUSSIAN R
[3]  
[Anonymous], 2002, CAMBRIDGE STUDIES AD
[4]  
[Anonymous], 2001, LIMIT DISTRIBUTIONS
[5]   Operator scaling stable random fields [J].
Bierme, Hermine ;
Meerschaert, Mark M. ;
Scheffler, Hans-Peter .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (03) :312-332
[6]   Holder regularity for operator scaling stable random fields [J].
Bierme, Hermine ;
Lacaux, Celine .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (07) :2222-2248
[7]   A possible truncated-Levy-flight statistics recovered from interplanetary solar-wind velocity and magnetic-field fluctuations [J].
Bruno, R ;
Sorriso-Valvo, L ;
Carbone, V ;
Bavassano, B .
EUROPHYSICS LETTERS, 2004, 66 (01) :146-152
[8]  
Cao L., 2014, 2014 IEEE 33 INT PER, P1
[9]   The fine structure of asset returns: An empirical investigation [J].
Carr, P ;
Geman, H ;
Madan, DB ;
Yor, M .
JOURNAL OF BUSINESS, 2002, 75 (02) :305-332
[10]  
Didier G., 2020, ARXIV PREPRINT ARXIV