Development of New Upper Body Power Prediction Models for Cross-Country Skiers by Using Different Machine Learning Methods

被引:0
作者
Daneshvar, Shahaboddin [1 ]
Abut, Fatih [1 ]
Yildiz, Incilay [1 ]
Akay, M. Fatih [1 ]
机构
[1] Cukurova Univ, Bilgisayar Muhendisligi Bolumu, Adana, Turkey
来源
2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU) | 2015年
关键词
machine learning; upper body power; regression;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Upper Body Power (UBP) is one of the most important determinants that directly affects the performance of cross-country skiers during races. In this study, new models have been developed to predict the 10-second UBP (UBP10) and 60-second UBP (UBP60) of cross-country skiers by using different machine learning methods including Cascade Correlation Network (CCN), Radial Basis Function Neural Network (RBF) and Decision Tree Forest (DTF). The predictor variables used to develop prediction models are age, gender, body mass index (BMI), heart rate (HR), maximal oxygen uptake (VO(2)max) and exercise time. By using 10-fold cross-validation on the dataset, the performance of the prediction models has been evaluated by calculating their multiple correlation coefficient (R) and standard error of estimate (SEE). The results show that the CCN-based model including the predictor variables age, gender, BMI and VO(2)max yields the lowest SEE both for the prediction of UBP10 and UBP60.
引用
收藏
页码:260 / 263
页数:4
相关论文
共 50 条
  • [11] Very Short-Term PV Power Prediction Using Machine Learning Models
    Javadi, Masoud
    Naderi, Soheil
    Liang, Xiaodong
    Gong, Yuzhong
    Chung, Chi Yung
    2022 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2022, : 55 - 59
  • [12] Predicting the traction power of metropolitan railway lines using different machine learning models
    Pineda-Jaramillo, J.
    Martinez-Fernandez, P.
    Villalba-Sanchis, I
    Salvador-Zuriaga, P.
    Insa-Franco, R.
    INTERNATIONAL JOURNAL OF RAIL TRANSPORTATION, 2021, 9 (05) : 461 - 478
  • [13] Development of Various Diabetes Prediction Models Using Machine Learning Techniques
    Shin, Juyoung
    Kim, Jaewon
    Lee, Chanjung
    Yoon, Joon Young
    Kim, Seyeon
    Song, Seungjae
    Kim, Hun-Sung
    DIABETES & METABOLISM JOURNAL, 2022, 46 (04) : 650 - 657
  • [14] Development of childhood asthma prediction models using machine learning approaches
    Kothalawala, Dilini M.
    Murray, Clare S.
    Simpson, Angela
    Custovic, Adnan
    Tapper, William J.
    Arshad, S. Hasan
    Holloway, John W.
    Rezwan, Faisal, I
    CLINICAL AND TRANSLATIONAL ALLERGY, 2021, 11 (09)
  • [15] Improving Streamflow Prediction Using Multiple Hydrological Models and Machine Learning Methods
    Solanki, Hiren
    Vegad, Urmin
    Kushwaha, Anuj
    Mishra, Vimal
    WATER RESOURCES RESEARCH, 2025, 61 (01)
  • [16] Stability of clinical prediction models developed using statistical or machine learning methods
    Riley, Richard D.
    Collins, Gary S.
    BIOMETRICAL JOURNAL, 2023, 65 (08)
  • [17] A new algorithm for time series prediction using machine learning models
    Jahnavi, Yeturu
    Elango, Poongothai
    Raja, S. P.
    Parra Fuente, Javier
    Verdu, Elena
    EVOLUTIONARY INTELLIGENCE, 2023, 16 (05) : 1449 - 1460
  • [18] A new algorithm for time series prediction using machine learning models
    Yeturu Jahnavi
    Poongothai Elango
    S. P. Raja
    Javier Parra Fuente
    Elena Verdú
    Evolutionary Intelligence, 2023, 16 : 1449 - 1460
  • [19] Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative Study
    Alkesaiberi, Abdulelah
    Harrou, Fouzi
    Sun, Ying
    ENERGIES, 2022, 15 (07)
  • [20] Development of shale gas production prediction models based on machine learning using early data
    Niu, Wente
    Lu, Jialiang
    Sun, Yuping
    ENERGY REPORTS, 2022, 8 : 1229 - 1237