Convexity of the solutions to the constant mean curvature spacelike surface equation in the Lorentz-Minkowski space

被引:6
作者
Albujer, Alma L. [1 ]
Caballero, Magdalena [1 ]
Lopez, Rafael [2 ]
机构
[1] Univ Cordoba, Dept Matemat, E-14071 Cordoba, Spain
[2] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
关键词
Spacelike hypersurface; Constant mean curvature; Dirichlet problem; Convex curve; Strictly convex surface; HYPERSURFACES;
D O I
10.1016/j.jde.2014.12.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a spacelike graph of constant mean curvature H not equal 0 in the 3-dimensional Lorentz-Minkowski space over a bounded domain with pseudo-elliptic boundary is strictly convex. By a pseudoelliptic curve we mean a closed and planar curve which intersects any branch of any hyperbola at most at five points. We also provide an example that shows that we cannot remove the assumption on the boundary being a pseudo-elliptic curve. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:2364 / 2374
页数:11
相关论文
共 24 条
[1]   On the curvatures of bounded complete spacelike hypersurfaces in the Lorentz-Minkowski space [J].
Aledo, JA ;
Alías, LJ .
MANUSCRIPTA MATHEMATICA, 2000, 101 (03) :401-413
[2]  
Aleksandrov A. D., 1962, AM MATH SOC TRANSL 2, V21, P341
[3]   UNIQUENESS OF COMPLETE SPACELIKE HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN GENERALIZED ROBERTSON-WALKER SPACETIMES [J].
ALIAS, LJ ;
ROMERO, A ;
SANCHEZ, M .
GENERAL RELATIVITY AND GRAVITATION, 1995, 27 (01) :71-84
[4]   Compact spacelike surfaces with constant mean curvature in the Lorentz-Minkowski 3-space [J].
Alías, LJ ;
López, R ;
Pastor, JA .
TOHOKU MATHEMATICAL JOURNAL, 1998, 50 (04) :491-501
[5]  
[Anonymous], 1993, GEOMETRY GLOBAL ANAL
[6]  
[Anonymous], 1984, Elliptic Partial Differential Equations of Second Order
[7]  
[Anonymous], 2013, Springer Monogr. Math
[8]  
[Anonymous], 1904, Math. Ann.
[9]   SPACELIKE HYPERSURFACES WITH PRESCRIBED BOUNDARY-VALUES AND MEAN-CURVATURE [J].
BARTNIK, R ;
SIMON, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 87 (01) :131-152
[10]  
BRASIL A, 1999, MAT CONT, V17, P99