Optical measurements of dynamic adhesive forces between bacteria and protein-coated surfaces

被引:0
作者
Simpson, K [1 ]
Bowden, G [1 ]
Höök, M [1 ]
Anvari, B [1 ]
机构
[1] Rice Univ, Dept Bioengn, Houston, TX 77251 USA
来源
MANIPULATION AND ANALYSIS OF BIOMOLECULES, CELLS AND TISSUES | 2003年 / 4962卷
关键词
bacterial adhesion; unbinding force; biofilm; extracellular matrix; infection; Staphylococcus aureus;
D O I
10.1117/12.477870
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Bacterial adhesion to host tissue is an initial step in the infectious process. Staphylococcus aureus, a major human pathogen, has covalently anchored cell surface adhesins called microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) which mediate specific adhesion to extracellular matrix (ECM) molecules. Understanding MSCRAMM binding is potentially useful in developing effective antibacterial drugs. In this study, optical tweezers were used in conjunction with a quadrant photodetector to measure adhesive forces between MSCRAMMs and surfaces coated with the ECM molecule fibronectin. Using a piezoelectrically driven stage, a fibronectin-coated microsphere adherent to a coverslip was brought into contact with a cell optically trapped at 830 nm. The microsphere was subsequently moved away from the cell, and a quadrant photodiode monitored the cell displacement from the trap center during the detachment process. The photodetector voltage signals were subsequently converted into the adhesive forces between MSCRAMMs and fibronectin based on a calibration using Stoke's law for viscous drag. Optical detection of the trapped bead displacement allowed us to study both the dynamics of the detachment process and observe the effects of various loading rates. This technique can be extended to identify the contributions of various MSCRAMM domains to adhesion in order to develop new methods of treating infections.
引用
收藏
页码:263 / 270
页数:8
相关论文
共 36 条
[1]   OPTICAL TRAPPING AND MANIPULATION OF VIRUSES AND BACTERIA [J].
ASHKIN, A ;
DZIEDZIC, JM .
SCIENCE, 1987, 235 (4795) :1517-1520
[2]   OPTICAL TRAPPING AND MANIPULATION OF SINGLE CELLS USING INFRARED-LASER BEAMS [J].
ASHKIN, A ;
DZIEDZIC, JM ;
YAMANE, T .
NATURE, 1987, 330 (6150) :769-771
[3]   Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers [J].
Berry, RM ;
Berg, HC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (26) :14433-14437
[4]   COMPLIANCE OF BACTERIAL POLYHOOKS MEASURED WITH OPTICAL TWEEZERS [J].
BLOCK, SM ;
BLAIR, DF ;
BERG, HC .
CYTOMETRY, 1991, 12 (06) :492-496
[5]   COMPLIANCE OF BACTERIAL FLAGELLA MEASURED WITH OPTICAL TWEEZERS [J].
BLOCK, SM ;
BLAIR, DF ;
BERG, HC .
NATURE, 1989, 338 (6215) :514-518
[6]   Torque-speed relationship of the flagellar rotary motor of Escherichia coli [J].
Chen, XB ;
Berg, HC .
BIOPHYSICAL JOURNAL, 2000, 78 (02) :1036-1041
[7]  
Chhatwal GS, 2000, GRAM-POSITIVE PATHOGENS, P78
[8]  
Dickinson R. B., 2000, HDB BACTERIAL ADHESI, P297
[9]   QUANTITATIVE COMPARISON OF CLUMPING FACTOR-MEDIATED AND COAGULASE-MEDIATED STAPHYLOCOCCUS-AUREUS ADHESION TO SURFACE-BOUND FIBRINOGEN UNDER FLOW [J].
DICKINSON, RB ;
NAGEL, JA ;
MCDEVITT, D ;
FOSTER, TJ ;
PROCTOR, RA ;
COUPER, SL .
INFECTION AND IMMUNITY, 1995, 63 (08) :3143-3150
[10]   Dynamic strength of molecular adhesion bonds [J].
Evans, E ;
Ritchie, K .
BIOPHYSICAL JOURNAL, 1997, 72 (04) :1541-1555