Herz-type Hardy spaces with variable exponents associated with operators satisfying Davies-Gaffney estimates

被引:0
作者
Ben Seghier, Souad [1 ]
Saibi, Khedoudj [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2022年 / 132卷 / 01期
关键词
Herz-type Hardy spaces; variable exponent; Davies-Gaffney estimates; atom; maximal function; radial maximal; Gaussian upper bound estimate; SOBOLEV SPACES; BOUNDEDNESS; DUALITY;
D O I
10.1007/s12044-022-00659-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be a one-to-one operator of type w, with w is an element of [0, pi/2], satisfying the Davies-Gaffney estimates. For alpha is an element of (0, infinity) and p is an element of (0, infinity) and under the condition that q(.) : R-n -> [1, infinity) satisfies the globally log-Holder continuity condition, we introduce the Herz-type Hardy space with variable exponents associated to L and establish its molecular decomposition. The atomic characterization and maximal function characterizations of the space are proved under the assumption that L is a non-negative self-adjoint operator on L-2(R-n) whose heat kernels satisfy the Gaussian upper bound estimates. All the results are new even for the constant case.
引用
收藏
页数:29
相关论文
共 40 条
  • [1] Atomic and molecular decompositions in variable exponent 2-microlocal spaces and applications
    Almeida, Alexandre
    Caetano, Antonio
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (05) : 1888 - 1921
  • [2] [Anonymous], P CTR MATH APPL AUST
  • [3] Auscher P., 2005, BOUNDEDNESS BANACH S
  • [4] ATOMIC DECOMPOSITION OF DISTRIBUTIONS IN PARABOLIC HP SPACES
    CALDERON, AP
    [J]. ADVANCES IN MATHEMATICS, 1977, 25 (03) : 216 - 225
  • [5] Cao J, 2015, J NONLINEAR CONVEX A, V16, P1205
  • [6] Cruz-Uribe D, 2006, ANN ACAD SCI FENN-M, V31, P239
  • [7] Cruz-Uribe D, 2004, ANN ACAD SCI FENN-M, V29, P247
  • [8] Hardy spaces associated with non-negative self-adjoint operators
    Dekel, Shai
    Kerkyacharian, Gerard
    Kyriazis, George
    Petrushev, Pencho
    [J]. STUDIA MATHEMATICA, 2017, 239 (01) : 17 - 54
  • [9] Function spaces of variable smoothness and integrability
    Diening, L.
    Hasto, P.
    Roudenko, S.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (06) : 1731 - 1768
  • [10] Lebesgue and Sobolev Spaces with Variable Exponents
    Diening, Lars
    Harjulehto, Petteri
    Hasto, Peter
    Ruzicka, Michael
    [J]. LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 : 1 - +