EEG-Based Emotion Recognition Using Convolutional Recurrent Neural Network with Multi-Head Self-Attention

被引:22
|
作者
Hu, Zhangfang [1 ]
Chen, Libujie [1 ,2 ]
Luo, Yuan [1 ,2 ]
Zhou, Jingfan [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Key Lab Optoelect Informat Sensing & Technol, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Sch Adv Mfg Engn, Chongqing 400065, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 21期
基金
中国国家自然科学基金;
关键词
EEG; emotion recognition; CNN; BiLSTM; multi-head self-attention; time-frequency map; CLASSIFICATION; DEEP;
D O I
10.3390/app122111255
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Featured Application The proposed method in this study can be used in EEG emotion recognition and achieve better results. In recent years, deep learning has been widely used in emotion recognition, but the models and algorithms in practical applications still have much room for improvement. With the development of graph convolutional neural networks, new ideas for emotional recognition based on EEG have arisen. In this paper, we propose a novel deep learning model-based emotion recognition method. First, the EEG signal is spatially filtered by using the common spatial pattern (CSP), and the filtered signal is converted into a time-frequency map by continuous wavelet transform (CWT). This is used as the input data of the network; then the feature extraction and classification are performed by the deep learning model. We called this model CNN-BiLSTM-MHSA, which consists of a convolutional neural network (CNN), bi-directional long and short-term memory network (BiLSTM), and multi-head self-attention (MHSA). This network is capable of learning the time series and spatial information of EEG emotion signals in depth, smoothing EEG signals and extracting deep features with CNN, learning emotion information of future and past time series with BiLSTM, and improving recognition accuracy with MHSA by reassigning weights to emotion features. Finally, we conducted experiments on the DEAP dataset for sentiment classification, and the experimental results showed that the method has better results than the existing classification. The accuracy of high and low valence, arousal, dominance, and liking state recognition is 98.10%, and the accuracy of four classifications of high and low valence-arousal recognition is 89.33%.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Using Recurrent Neural Network Structure and Multi-Head Attention with Convolution for Fraudulent Phone Text Recognition
    Zhou J.
    Xu H.
    Zhang Z.
    Lu J.
    Guo W.
    Li Z.
    Computer Systems Science and Engineering, 2023, 46 (02): : 2277 - 2297
  • [32] Multimodal Approach of Speech Emotion Recognition Using Multi-Level Multi-Head Fusion Attention-Based Recurrent Neural Network
    Ngoc-Huynh Ho
    Yang, Hyung-Jeong
    Kim, Soo-Hyung
    Lee, Gueesang
    IEEE ACCESS, 2020, 8 : 61672 - 61686
  • [33] SCC-MPGCN: self-attention coherence clustering based on multi-pooling graph convolutional network for EEG emotion recognition
    Zhao, Huijuan
    Liu, Jingjin
    Shen, Zhenqian
    Yan, Jingwen
    JOURNAL OF NEURAL ENGINEERING, 2022, 19 (02)
  • [34] Attention induced multi-head convolutional neural network for human activity recognition
    Khan, Zanobya N.
    Ahmad, Jamil
    APPLIED SOFT COMPUTING, 2021, 110
  • [35] Data Augmentation for EEG-Based Emotion Recognition with Deep Convolutional Neural Networks
    Wang, Fang
    Zhong, Sheng-hua
    Peng, Jianfeng
    Jiang, Jianmin
    Liu, Yan
    MULTIMEDIA MODELING, MMM 2018, PT II, 2018, 10705 : 82 - 93
  • [36] EEG-based emotion recognition using random Convolutional Neural Networks
    Cheng, Wen Xin
    Gao, Ruobin
    Suganthan, P. N.
    Yuen, Kum Fai
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 116
  • [37] Music Emotion Recognition Using Multi-head Self-attention-Based Models
    Xiao, Yao
    Ruan, Haoxin
    Zhao, Xujian
    Jin, Peiquan
    Cai, Xuebo
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT IV, 2023, 14089 : 101 - 114
  • [38] EEG emotion recognition based on TQWT-features and hybrid convolutional recurrent neural network
    Zhong, Mei-yu
    Yang, Qing-yu
    Liu, Yi
    Zhen, Bo-yu
    Zhao, Feng-da
    Xie, Bei-bei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 79
  • [39] EEG emotion recognition using attention-based convolutional transformer neural network
    Gong, Linlin
    Li, Mingyang
    Zhang, Tao
    Chen, Wanzhong
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 84
  • [40] Multiscale Temporal Self-Attention and Dynamical Graph Convolution Hybrid Network for EEG-Based Stereogram Recognition
    Shen, Lili
    Sun, Mingyang
    Li, Qunxia
    Li, Beichen
    Pan, Zhaoqing
    Lei, Jianjun
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2022, 30 : 1191 - 1202