Maximum spread of D-dimensional multiple turbo codes

被引:20
作者
Boutillon, E
Gnaedig, D
机构
[1] Univ Bretagne Sud, LESTER, F-56321 Lorient, France
[2] TurboConcept, Technol Brest Iroise, F-29280 Plouzane, France
[3] ENST Bretagne, F-29238 Brest, France
关键词
interleavers; multiple turbo codes; sphere bound (SB); spread; turbo codes;
D O I
10.1109/TCOMM.2005.852832
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter presents the mathematical framework involved in the determination of an upper bound of the maximum spread value of a D-dimensional turbo code of frame size N. This bound is named the sphere bound (SB). It is obtained using some simple properties of Euclidian space (sphere packing in a finite volume). The SB obtained for dimension 2 is equal to root 2N. This result has already been conjectured. For dimension 3, we prove that the SB cannot be reached, but can be closely approached (at least up to 95%). For dimensions 4-6, the construction of particular interleavers shows that the SB can be approached up to 80%. Moreover, from the SB calculation, an estimate of the minimum Hamming weight of the weight-two input sequence is derived.
引用
收藏
页码:1237 / 1242
页数:6
相关论文
共 8 条
[1]  
[Anonymous], P 20 BIENN S COMM KI
[2]   Design of parallel concatenated convolutional codes [J].
Benedetto, S ;
Montorsi, G .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1996, 44 (05) :591-600
[3]   Unveiling turbo codes: Some results on parallel concatenated coding schemes [J].
Benedetto, S ;
Montorsi, G .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (02) :409-428
[4]  
BEROU C, 1993, P IEEE INT C COMM IC, P1064
[5]  
DOLINAR S, 1995, 42122 JPL TDA
[6]  
FEDOROV ES, 1953, ZAP MINERAL IMPER S, V21, P1
[7]   Design of three-dimensional multiple slice turbo codes [J].
Gnaedig, D ;
Boutillon, E ;
Jézéquel, M .
EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2005, 2005 (06) :808-819
[8]  
HOKFELT J, 1999, P IEEE INT C COMM VA, V1, P93