Bayesian Hierarchical Models for Ordinal and Missing Data

被引:0
作者
Zhao Qiang [1 ]
You Haiyan [2 ]
机构
[1] Shandong Normal Univ, Sch Math Sci, Jinan 250014, Shandong, Peoples R China
[2] Shandong Jianzhu Univ, Sch Sci, Jinan 250014, Shandong, Peoples R China
来源
DATA PROCESSING AND QUANTITATIVE ECONOMY MODELING | 2010年
关键词
Bayesian hierarchical models; Longitudinal data; Markov chain; Monte Carlo; Random effects;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Longitudinal data arise if outcomes are measured repeatedly following time. Bayesian hierarchical models have been proved to be a powerful tool for analysis of longitudinal data with computation being performed by Markov chain Monte Carlo (MCMC) methods. The hierarchical models extend the random effects models by including a prior on the regression coefficients and parameters in the distribution of the random effects. The WinBUGS project can be utilized for the computation of MCMC.
引用
收藏
页码:464 / +
页数:2
相关论文
共 10 条
[1]  
[Anonymous], 1996, Tools for Statistical Inference
[2]  
[Anonymous], 1999, WINBUGS 1 3 MRC BIOS
[3]  
DuMouchel W, 1992, BAYESIAN STAT, V4, P338
[4]   Random effects probit and logistic regression models for three-level data [J].
Gibbons, RD ;
Hedeker, D .
BIOMETRICS, 1997, 53 (04) :1527-1537
[5]   A RANDOM-EFFECTS ORDINAL REGRESSION-MODEL FOR MULTILEVEL ANALYSIS [J].
HEDEKER, D ;
GIBBONS, RD .
BIOMETRICS, 1994, 50 (04) :933-944
[6]  
McCullagh P, 1989, GENERALIZED LINEAR M, DOI DOI 10.1007/978-1-4899-3242-6
[7]  
Qiu Zhenguo, 2002, J Biopharm Stat, V12, P121, DOI 10.1081/BIP-120014415
[8]   Analysis of clustered ordinal data with subclusters via a Bayesian hierarchical model [J].
Qu, YS ;
Tan, M .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1998, 27 (06) :1461-1475
[9]  
Tan M, 1999, STAT MED, V18, P1983, DOI 10.1002/(SICI)1097-0258(19990815)18:15<1983::AID-SIM177>3.0.CO
[10]  
2-B