A quantum processor based on coherent transport of entangled atom arrays

被引:482
作者
Bluvstein, Dolev [1 ]
Levine, Harry [1 ,7 ]
Semeghini, Giulia [1 ]
Wang, Tout T. [1 ]
Ebadi, Sepehr [1 ]
Kalinowski, Marcin [1 ]
Keesling, Alexander [1 ,2 ]
Maskara, Nishad [1 ]
Pichler, Hannes [3 ,4 ]
Greiner, Markus [1 ]
Vuletic, Vladan [5 ,6 ]
Lukin, Mikhail D. [1 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] QuEra Comp Inc, Boston, MA USA
[3] Univ Innsbruck, Inst Theoret Phys, Innsbruck, Austria
[4] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, Innsbruck, Austria
[5] MIT, Dept Phys, Cambridge, MA 02139 USA
[6] MIT, Res Lab Elect, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[7] AWS Ctr Quantum Comp, Pasadena, CA USA
基金
美国国家科学基金会;
关键词
STATE; QUBITS; SINGLE; COMPUTER; DYNAMICS; IONS;
D O I
10.1038/s41586-022-04592-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ability to engineer parallel, programmable operations between desired qubits within a quantum processor is key for building scalable quantum information systems(1,2). In most state-of-the-art approaches, qubits interact locally, constrained by the connectivity associated with their fixed spatial layout. Here we demonstrate a quantum processor with dynamic, non-local connectivity, in which entangled qubits are coherently transported in a highly parallel manner across two spatial dimensions, between layers of single- and two-qubit operations. Our approach makes use of neutral atom arrays trapped and transported by optical tweezers; hyperfine states are used for robust quantum information storage, and excitation into Rydberg states is used for entanglement generation(3-5). We use this architecture to realize programmable generation of entangled graph states, such as cluster states and a seven-qubit Steane code state(6,7). Furthermore, we shuttle entangled ancilla arrays to realize a surface code state with thirteen data and six ancillary qubits(8) and a toric code state on a torus with sixteen data and eight ancillary qubits(9). Finally, we use this architecture to realize a hybrid analogue-digital evolution(2) and use it for measuring entanglement entropy in quantum simulations(10-12), experimentally observing non-monotonic entanglement dynamics associated with quantum many-body scars(13,14). Realizing a long-standing goal, these results provide a route towards scalable quantum processing and enable applications ranging from simulation to metrology.
引用
收藏
页码:451 / +
页数:21
相关论文
共 75 条
[11]   Exponential suppression of bit or phase errors with cyclic error correction [J].
Chen, Zijun ;
Satzinger, Kevin J. ;
Atalaya, Juan ;
Korotkov, Alexander N. ;
Dunsworth, Andrew ;
Sank, Daniel ;
Quintana, Chris ;
McEwen, Matt ;
Barends, Rami ;
Klimov, Paul, V ;
Hong, Sabrina ;
Jones, Cody ;
Petukhov, Andre ;
Kafri, Dvir ;
Demura, Sean ;
Burkett, Brian ;
Gidney, Craig ;
Fowler, Austin G. ;
Paler, Alexandru ;
Putterman, Harald ;
Aleiner, Igor ;
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bardin, Joseph C. ;
Bengtsson, Andreas ;
Bourassa, Alexandre ;
Broughton, Michael ;
Buckley, Bob B. ;
Buell, David A. ;
Bushnell, Nicholas ;
Chiaro, Benjamin ;
Collins, Roberto ;
Courtney, William ;
Derk, Alan R. ;
Eppens, Daniel ;
Erickson, Catherine ;
Farhi, Edward ;
Foxen, Brooks ;
Giustina, Marissa ;
Greene, Ami ;
Gross, Jonathan A. ;
Harrigan, Matthew P. ;
Harrington, Sean D. ;
Hilton, Jeremy ;
Ho, Alan ;
Huang, Trent ;
Huggins, William J. ;
Ioffe, L. B. ;
Isakov, Sergei, V .
NATURE, 2021, 595 (7867) :383-+
[12]   A scalable quantum computer with ions in an array of microtraps [J].
Cirac, JI ;
Zoller, P .
NATURE, 2000, 404 (6778) :579-581
[13]  
Cong Iris, ARXIV210513501, P2021, DOI [10.48550/arXiv.2105.13501, DOI 10.48550/ARXIV.2105.13501]
[14]   Optimal transport of ultracold atoms in the non-adiabatic regime [J].
Couvert, A. ;
Kawalec, T. ;
Reinaudi, G. ;
Guery-Odelin, D. .
EPL, 2008, 83 (01)
[15]   Measuring Entanglement Growth in Quench Dynamics of Bosons in an Optical Lattice [J].
Daley, A. J. ;
Pichler, H. ;
Schachenmayer, J. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2012, 109 (02)
[16]   Entanglement transport and a nanophotonic interface for atoms in optical tweezers [J].
Dordevic, Tamara ;
Samutpraphoot, Polnop ;
Ocola, Paloma L. ;
Bernien, Hannes ;
Grinkemeyer, Brandon ;
Dimitrova, Ivana ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
SCIENCE, 2021, 373 (6562) :1511-+
[17]   Quantum phases of matter on a 256-atom programmable quantum simulator [J].
Ebadi, Sepehr ;
Wang, Tout T. ;
Levine, Harry ;
Keesling, Alexander ;
Semeghini, Giulia ;
Omran, Ahmed ;
Bluvstein, Dolev ;
Samajdar, Rhine ;
Pichler, Hannes ;
Ho, Wen Wei ;
Choi, Soonwon ;
Sachdev, Subir ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2021, 595 (7866) :227-+
[18]   Fault-tolerant control of an error-corrected qubit [J].
Egan, Laird ;
Debroy, Dripto M. ;
Noel, Crystal ;
Risinger, Andrew ;
Zhu, Daiwei ;
Biswas, Debopriyo ;
Newman, Michael ;
Li, Muyuan ;
Brown, Kenneth R. ;
Cetina, Marko ;
Monroe, Christopher .
NATURE, 2021, 598 (7880) :281-+
[19]   Entangling logical qubits with lattice surgery [J].
Erhard, Alexander ;
Poulsen Nautrup, Hendrik ;
Meth, Michael ;
Postler, Lukas ;
Stricker, Roman ;
Stadler, Martin ;
Negnevitsky, Vlad ;
Ringbauer, Martin ;
Schindler, Philipp ;
Briegel, Hans J. ;
Blatt, Rainer ;
Friis, Nicolai ;
Monz, Thomas .
NATURE, 2021, 589 (7841) :220-+
[20]   Surface codes: Towards practical large-scale quantum computation [J].
Fowler, Austin G. ;
Mariantoni, Matteo ;
Martinis, John M. ;
Cleland, Andrew N. .
PHYSICAL REVIEW A, 2012, 86 (03)