A quantum processor based on coherent transport of entangled atom arrays

被引:482
作者
Bluvstein, Dolev [1 ]
Levine, Harry [1 ,7 ]
Semeghini, Giulia [1 ]
Wang, Tout T. [1 ]
Ebadi, Sepehr [1 ]
Kalinowski, Marcin [1 ]
Keesling, Alexander [1 ,2 ]
Maskara, Nishad [1 ]
Pichler, Hannes [3 ,4 ]
Greiner, Markus [1 ]
Vuletic, Vladan [5 ,6 ]
Lukin, Mikhail D. [1 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] QuEra Comp Inc, Boston, MA USA
[3] Univ Innsbruck, Inst Theoret Phys, Innsbruck, Austria
[4] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, Innsbruck, Austria
[5] MIT, Dept Phys, Cambridge, MA 02139 USA
[6] MIT, Res Lab Elect, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[7] AWS Ctr Quantum Comp, Pasadena, CA USA
基金
美国国家科学基金会;
关键词
STATE; QUBITS; SINGLE; COMPUTER; DYNAMICS; IONS;
D O I
10.1038/s41586-022-04592-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ability to engineer parallel, programmable operations between desired qubits within a quantum processor is key for building scalable quantum information systems(1,2). In most state-of-the-art approaches, qubits interact locally, constrained by the connectivity associated with their fixed spatial layout. Here we demonstrate a quantum processor with dynamic, non-local connectivity, in which entangled qubits are coherently transported in a highly parallel manner across two spatial dimensions, between layers of single- and two-qubit operations. Our approach makes use of neutral atom arrays trapped and transported by optical tweezers; hyperfine states are used for robust quantum information storage, and excitation into Rydberg states is used for entanglement generation(3-5). We use this architecture to realize programmable generation of entangled graph states, such as cluster states and a seven-qubit Steane code state(6,7). Furthermore, we shuttle entangled ancilla arrays to realize a surface code state with thirteen data and six ancillary qubits(8) and a toric code state on a torus with sixteen data and eight ancillary qubits(9). Finally, we use this architecture to realize a hybrid analogue-digital evolution(2) and use it for measuring entanglement entropy in quantum simulations(10-12), experimentally observing non-monotonic entanglement dynamics associated with quantum many-body scars(13,14). Realizing a long-standing goal, these results provide a route towards scalable quantum processing and enable applications ranging from simulation to metrology.
引用
收藏
页码:451 / +
页数:21
相关论文
共 75 条
[1]   Probing many-body dynamics on a 51-atom quantum simulator [J].
Bernien, Hannes ;
Schwartz, Sylvain ;
Keesling, Alexander ;
Levine, Harry ;
Omran, Ahmed ;
Pichler, Hannes ;
Choi, Soonwon ;
Zibrov, Alexander S. ;
Endres, Manuel ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2017, 551 (7682) :579-+
[2]   Two-dimensional transport and transfer of a single atomic qubit in optical tweezers [J].
Beugnon, Jerome ;
Tuchendler, Charles ;
Marion, Harold ;
Gaetan, Alpha ;
Miroshnychenko, Yevhen ;
Sortais, Yvan R. P. ;
Lance, Andrew M. ;
Jones, Matthew P. A. ;
Messin, Gaetan ;
Browaeys, Antoine ;
Grangier, Philippe .
NATURE PHYSICS, 2007, 3 (10) :696-699
[3]   Controlling quantum many-body dynamics in driven Rydberg atom arrays [J].
Bluvstein, D. ;
Omran, A. ;
Levine, H. ;
Keesling, A. ;
Semeghini, G. ;
Ebadi, S. ;
Wang, T. T. ;
Michailidis, A. A. ;
Maskara, N. ;
Ho, W. W. ;
Choi, S. ;
Serbyn, M. ;
Greiner, M. ;
Vuletic, V. ;
Lukin, M. D. .
SCIENCE, 2021, 371 (6536) :1355-+
[4]   Foliated Quantum Error-Correcting Codes [J].
Bolt, A. ;
Duclos-Cianci, G. ;
Poulin, D. ;
Stace, T. M. .
PHYSICAL REVIEW LETTERS, 2016, 117 (07)
[6]   Resolving the gravitational redshift across a millimetre-scale atomic sample [J].
Bothwell, Tobias ;
Kennedy, Colin J. ;
Aeppli, Alexander ;
Kedar, Dhruv ;
Robinson, John M. ;
Oelker, Eric ;
Staron, Alexander ;
Ye, Jun .
NATURE, 2022, 602 (7897) :420-+
[7]   Lieb-robinson bounds and the generation of correlations and topological quantum order [J].
Bravyi, S. ;
Hastings, M. B. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)
[8]   Quantum Low-Density Parity-Check Codes [J].
Breuckmann, Nikolas P. ;
Eberhardt, Jens Niklas .
PRX QUANTUM, 2021, 2 (04)
[9]  
Brown A. R., 2019, QUANTUM GRAVITY LAB
[10]   COHERENT STATES AND FORCED QUANTUM OSCILLATOR [J].
CARRUTHERS, P ;
NIETO, MM .
AMERICAN JOURNAL OF PHYSICS, 1965, 33 (07) :537-+