Mucoadhesive plasticized system of branched poly(lactic-co-glycolic acid) with aciclovir

被引:8
|
作者
Snejdrova, Eva [1 ]
Drastik, Martin [2 ]
Dittrich, Milan [1 ]
Kastner, Petr [3 ]
Nguyenova, Jana [1 ]
机构
[1] Charles Univ Prague, Fac Pharm Hradec Kralove, Dept Pharmaceut Technol, Prague, Czech Republic
[2] Charles Univ Prague, Fac Pharm Hradec Kralove, Dept Biophys & Phys Chem, Prague, Czech Republic
[3] Charles Univ Prague, Fac Pharm Hradec Kralove, Dept Pharmaceut Chem & Drug Control, Prague, Czech Republic
关键词
Acyclovir; branched molecule; drug release; ethyl pyruvate; mucoadhesivity; poly(lactic-co-glycolic acid); plasticization; solid dispersion; SOLID DISPERSIONS; MELT EXTRUSION; BIOAVAILABILITY; DELIVERY; POLYMER; DISSOLUTION; SOLUBILITY; ADDITIVES;
D O I
10.3109/03639045.2016.1160109
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Commercially available antibacterial semisolid preparations intended for topical application provide only short-term drug release. A sustained kinetics is possible by exploitation of a biodegradable polymer carrier. The purpose of this work is to formulate a mucoadhesive system with aciclovir (ACV) based on a solid molecular dispersion of this drug in poly(lactic-co-glycolic acid) branched on tripenterythritol (PLGA/T). The ACV incorporation into PLGA/T was carried out either by solvent method, or melting method, or plasticization method using various plasticizers. The drug-polymer miscibility, plasticizer efficiency and content of residual solvent were found out employing DSC. Viscosity was measured at the shear rate range from 0.10 to 10.00 s(-1) at three temperatures and data were analyzed by Newtonian model. The mucoadhesive properties were ascertained in the tensile test on a mucin substrate. The amount of ACV released was carried out in a wash-off dissolution test. The DSC results indicate a transformation of crystalline form of ACV into an amorphous dissolved in branched polyester carrier, and absence of methyl formate residuals in formulation. All the tested plasticizers are efficient at T-g depression and viscosity decrease. The non-conventional ethyl pyruvate possessing supportive anti-inflammatory activity was evaluated as the most suitable plasticizer. The ACV release was strongly dependent on the ethyl pyruvate concentration and lasted from 1 to 10 days. The formulated PLGA/T system with ACV exhibits increased adhesion to mucosal hydrophilic surfaces and prolonged ACV release controllable by degradation process and viscosity parameters.
引用
收藏
页码:1653 / 1659
页数:7
相关论文
共 50 条
  • [1] Emerging trends in Poly(lactic-co-glycolic) acid bionanoarchitectures and applications
    Idumah, Christopher Igwe
    CLEANER MATERIALS, 2022, 5
  • [2] Effect of acidic degradation products of poly(lactic-co-glycolic)acid on the apatite-forming ability of poly(lactic-co-glycolic)acid-siloxane nanohybrid material
    Rhee, Sang-Hoon
    Lee, Seung Jin
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2007, 83A (03) : 799 - 805
  • [3] Loading of gentamicin onto poly lactic-co-glycolic acid and poly lactic-co-glycolic acid/nano-hydroxyapatite composite microspheres.
    Nojehdehian, Hanieh
    Ekrami, Malihe
    Shahriari, Mehrnoosh Hasan
    Karimi, Reza
    Jaberiansari, Zahra
    BIOMEDICAL RESEARCH-INDIA, 2016, 27 (01): : 70 - 78
  • [4] Study of poly(lactic-co-glycolic acid) interactions with collagen
    de Gregorio, GG
    López-Cabarcos, E
    Castro, RM
    EUROPEAN POLYMER JOURNAL, 2005, 41 (10) : 2416 - 2421
  • [5] Synthesis and Characterization of Biodegradable Poly(lactic-co-glycolic acid)
    Mei, Fangfang
    Peng, Ya
    Lu, Shoutao
    Sun, Fei
    Zhang, Ying
    Ge, Cui
    Zhang, Yong
    Gu, Hualin
    Wang, Yangdan
    Zhao, Xinwei
    Wang, Guoyao
    Journal of Macromolecular Science Part B-Physics, 2015, 54 (05): : 562 - 570
  • [6] Culturing Primary Human Osteoblasts on Electrospun Poly(lactic-co-glycolic acid) and Poly(lactic-co-glycolic acid)/Nanohydroxyapatite Scaffolds for Bone Tissue Engineering
    Li, Mengmeng
    Liu, Wenwen
    Sun, Jiashu
    Xianyu, Yunlei
    Wang, Jidong
    Zhang, Wei
    Zheng, Wenfu
    Huang, Deyong
    Di, Shiyu
    Long, Yun-Ze
    Jiang, Xingyu
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (13) : 5921 - 5926
  • [7] Role of Electrospinning Parameters on Poly(Lactic-co-Glycolic Acid) and Poly(Caprolactone-co-Glycolic acid) Membranes
    Herrero-Herrero, Maria
    Gomez-Tejedor, Jose Antonio
    Valles-Lluch, Ana
    POLYMERS, 2021, 13 (05) : 1 - 11
  • [8] Poly(lactic acid)/poly(lactic-co-glycolic acid) particulate carriers for pulmonary drug delivery
    Emami F.
    Mostafavi Yazdi S.J.
    Na D.H.
    Journal of Pharmaceutical Investigation, 2019, 49 (4) : 427 - 442
  • [9] Stability of insulin during the erosion of poly(lactic acid) and poly(lactic-co-glycolic acid) microspheres
    Ibrahim, MA
    Ismail, A
    Fetouh, MI
    Göpferich, A
    JOURNAL OF CONTROLLED RELEASE, 2005, 106 (03) : 241 - 252
  • [10] Latent, Immunosuppressive Nature of Poly(lactic-co-glycolic acid) Microparticles
    Allen, Riley P.
    Bolandparvaz, Amir
    Ma, Jeffrey A.
    Manickam, Vishal A.
    Lewis, Jamal S.
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2018, 4 (03): : 900 - 918