Improving kernel-based nonparametric regression for circular-linear data

被引:0
|
作者
Tsuruta, Yasuhito [1 ]
Sagae, Masahiko [2 ]
机构
[1] Univ Nagano, Fac Global Management Studies, 8-49-7 Miwa, Nagano, Nagano 3808525, Japan
[2] Kanazawa Univ, Sch Econ, Kakumamachi, Kanazawa, Ishikawa 9201192, Japan
关键词
Circular-linear data; Nonparametric regression; Local polynomial regression; Kernel function; DENSITY-ESTIMATION;
D O I
10.1007/s42081-022-00145-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss kernel-based nonparametric regression where a predictor has support on a circle and a responder has support on a real line. Nonparametric regression is used in analyzing circular-linear data because of its flexibility. However, nonparametric regression is generally less accurate than an appropriate parametric regression for a population model. Considering that statisticians need more accurate nonparametric regression models, we investigate the performance of sine series local polynomial regression while selecting the most suitable kernel class. The asymptotic result shows that higher-order estimators reduce conditional bias; however, they do not improve conditional variance. We show that higher-order estimators improve the convergence rate of the weighted conditional mean integrated square error. We also prove the asymptotic normality of the estimator. We conduct a numerical experiment to examine a small sample of characteristics of the estimator in scenarios wherein the error term is homoscedastic or heterogeneous. The result shows that choosing a higher degree improves performance under the finite sample in homoscedastic or heterogeneous scenarios. In particular, in some scenarios where the regression function is wiggly, higher-order estimators perform significantly better than local constant and linear estimators.
引用
收藏
页码:111 / 131
页数:21
相关论文
共 50 条
  • [1] Improving kernel-based nonparametric regression for circular–linear data
    Yasuhito Tsuruta
    Masahiko Sagae
    Japanese Journal of Statistics and Data Science, 2022, 5 : 111 - 131
  • [2] On kernel nonparametric regression designed for complex survey data
    Harms, Torsten
    Duchesne, Pierre
    METRIKA, 2010, 72 (01) : 111 - 138
  • [3] A kernel-based method for nonparametric estimation of variograms
    Yu, Keming
    Mateu, Jorge
    Porcu, Emilio
    STATISTICA NEERLANDICA, 2007, 61 (02) : 173 - 197
  • [4] On kernel nonparametric regression designed for complex survey data
    Torsten Harms
    Pierre Duchesne
    Metrika, 2010, 72 : 111 - 138
  • [5] Models for circular-linear and circular-circular data constructed from circular distributions based on nonnegative trigonometric sums
    Fernandez-Duran, J. J.
    BIOMETRICS, 2007, 63 (02) : 579 - 585
  • [6] Universal Local Linear Kernel Estimators in Nonparametric Regression
    Linke, Yuliana
    Borisov, Igor
    Ruzankin, Pavel
    Kutsenko, Vladimir
    Yarovaya, Elena
    Shalnova, Svetlana
    MATHEMATICS, 2022, 10 (15)
  • [7] Adaptive warped kernel estimation for nonparametric regression with circular responses
    Nguyen, Tien Dat
    Ngoc, Thanh Mai Pham
    Rivoirard, Vincent
    ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (02): : 4011 - 4048
  • [8] Nonparametric Kernel Regression and Its Real Data Application
    Toupal, Tomas
    Vavra, Frantisek
    MATHEMATICAL METHODS IN ECONOMICS (MME 2017), 2017, : 813 - 818
  • [9] Multivariate Universal Local Linear Kernel Estimators in Nonparametric Regression: Uniform Consistency
    Linke, Yuliana
    Borisov, Igor
    Ruzankin, Pavel
    Kutsenko, Vladimir
    Yarovaya, Elena
    Shalnova, Svetlana
    MATHEMATICS, 2024, 12 (12)
  • [10] Local linear kernel estimation for discontinuous nonparametric regression functions
    Gao, JT
    Pettitt, AN
    Wolff, RCL
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1998, 27 (12) : 2871 - 2894