Improving kernel-based nonparametric regression for circular-linear data

被引:0
作者
Tsuruta, Yasuhito [1 ]
Sagae, Masahiko [2 ]
机构
[1] Univ Nagano, Fac Global Management Studies, 8-49-7 Miwa, Nagano, Nagano 3808525, Japan
[2] Kanazawa Univ, Sch Econ, Kakumamachi, Kanazawa, Ishikawa 9201192, Japan
关键词
Circular-linear data; Nonparametric regression; Local polynomial regression; Kernel function; DENSITY-ESTIMATION;
D O I
10.1007/s42081-022-00145-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss kernel-based nonparametric regression where a predictor has support on a circle and a responder has support on a real line. Nonparametric regression is used in analyzing circular-linear data because of its flexibility. However, nonparametric regression is generally less accurate than an appropriate parametric regression for a population model. Considering that statisticians need more accurate nonparametric regression models, we investigate the performance of sine series local polynomial regression while selecting the most suitable kernel class. The asymptotic result shows that higher-order estimators reduce conditional bias; however, they do not improve conditional variance. We show that higher-order estimators improve the convergence rate of the weighted conditional mean integrated square error. We also prove the asymptotic normality of the estimator. We conduct a numerical experiment to examine a small sample of characteristics of the estimator in scenarios wherein the error term is homoscedastic or heterogeneous. The result shows that choosing a higher degree improves performance under the finite sample in homoscedastic or heterogeneous scenarios. In particular, in some scenarios where the regression function is wiggly, higher-order estimators perform significantly better than local constant and linear estimators.
引用
收藏
页码:111 / 131
页数:21
相关论文
共 14 条
[1]   Nonparametric Regression for Spherical Data [J].
Di Marzio, Marco ;
Panzera, Agnese ;
Taylor, Charles C. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (506) :748-763
[2]   Kernel density estimation on the torus [J].
Di Marzio, Marco ;
Panzera, Agnese ;
Taylor, Charles C. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (06) :2156-2173
[3]   Local polynomial regression for circular predictors [J].
Di Marzio, Marco ;
Panzera, Agnese ;
Taylor, Charles C. .
STATISTICS & PROBABILITY LETTERS, 2009, 79 (19) :2066-2075
[4]   Testing parametric models in linear-directional regression [J].
Garcia-Portugues, Eduardo ;
Van Keilegom, Ingrid ;
Crujeiras, Rosa M. ;
Gonzalez-Manteiga, Wenceslao .
SCANDINAVIAN JOURNAL OF STATISTICS, 2016, 43 (04) :1178-1191
[5]   KERNEL DENSITY-ESTIMATION WITH SPHERICAL DATA [J].
HALL, P ;
WATSON, GS ;
CABRERA, J .
BIOMETRIKA, 1987, 74 (04) :751-762
[6]   SMOOTH ESTIMATORS OF DISTRIBUTION AND DENSITY-FUNCTIONS [J].
LEJEUNE, M ;
SARDA, P .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1992, 14 (04) :457-471
[7]  
Mardia K. V., 2000, Directional Statistics, V2nd, DOI DOI 10.1002/9780470316979
[8]   A nonparametric circular-linear multivariate regression model with a rule-of-thumb bandwidth selector [J].
Qin, Xu ;
Zhang, Jiang-She ;
Yan, Xiao-Dong .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (08) :3048-3055
[9]   MULTIVARIATE LOCALLY WEIGHTED LEAST-SQUARES REGRESSION [J].
RUPPERT, D ;
WAND, MP .
ANNALS OF STATISTICS, 1994, 22 (03) :1346-1370
[10]  
Tsuruta Y., 2018, Bull. Inform. Cybern, V50, P1, DOI [10.5109/2232334, DOI 10.5109/2232334]