Deep ocean ventilation, carbon isotopes, marine sedimentation and the deglacial CO2 rise

被引:94
作者
Tschumi, T. [1 ]
Joos, F. [1 ,2 ]
Gehlen, M. [3 ]
Heinze, C. [4 ,5 ,6 ]
机构
[1] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland
[2] Univ Bern, Oeschger Ctr Climate Change Res, CH-3012 Bern, Switzerland
[3] Lab Climat & Environm LSCE, F-91191 Gif Sur Yvette, France
[4] Univ Bergen, Inst Geophys, N-5007 Bergen, Norway
[5] Bjerknes Ctr Climate Res, Bergen, Norway
[6] Uni Res, Uni Bjerknes Ctr, Bergen, Norway
基金
瑞士国家科学基金会;
关键词
ATMOSPHERIC CO2; SOUTHERN-OCEAN; CACO3; COMPENSATION; CLIMATE-CHANGE; CYCLE CHANGES; PHYTOPLANKTON; CIRCULATION; ATLANTIC; CALCITE; IMPACT;
D O I
10.5194/cp-7-771-2011
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The link between the atmospheric CO2 level and the ventilation state of the deep ocean is an important building block of the key hypotheses put forth to explain glacial-interglacial CO2 fluctuations. In this study, we systematically examine the sensitivity of atmospheric CO2 and its carbon isotope composition to changes in deep ocean ventilation, the ocean carbon pumps, and sediment formation in a global 3D ocean-sediment carbon cycle model. Our results provide support for the hypothesis that a break up of Southern Ocean stratification and invigorated deep ocean ventilation were the dominant drivers for the early deglacial CO2 rise of similar to 35 ppm between the Last Glacial Maximum and 14.6 ka BP. Another rise of 10 ppm until the end of the Holocene is attributed to carbonate compensation responding to the early deglacial change in ocean circulation. Our reasoning is based on a multi-proxy analysis which indicates that an acceleration of deep ocean ventilation during early deglaciation is not only consistent with recorded atmospheric CO2 but also with the reconstructed opal sedimentation peak in the Southern Ocean at around 16 ka BP, the record of atmospheric beta C-13(CO2), and the reconstructed changes in the Pacific CaCO3 saturation horizon.
引用
收藏
页码:771 / 800
页数:30
相关论文
共 124 条
  • [1] The salinity, temperature, and δ18O of the glacial deep ocean
    Adkins, JF
    McIntyre, K
    Schrag, DP
    [J]. SCIENCE, 2002, 298 (5599) : 1769 - 1773
  • [2] REDFIELD RATIOS OF REMINERALIZATION DETERMINED BY NUTRIENT DATA-ANALYSIS
    ANDERSON, LA
    SARMIENTO, JL
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 1994, 8 (01) : 65 - 80
  • [3] Wind-Driven Upwelling in the Southern Ocean and the Deglacial Rise in Atmospheric CO2
    Anderson, R. F.
    Ali, S.
    Bradtmiller, L. I.
    Nielsen, S. H. H.
    Fleisher, M. Q.
    Anderson, B. E.
    Burckle, L. H.
    [J]. SCIENCE, 2009, 323 (5920) : 1443 - 1448
  • [4] [Anonymous], GEOPHYS MONOGRAPH SE
  • [5] What caused the glacial/interglacial atmospheric pCO2 cycles?
    Archer, D
    Winguth, A
    Lea, D
    Mahowald, N
    [J]. REVIEWS OF GEOPHYSICS, 2000, 38 (02) : 159 - 189
  • [6] EFFECT OF DEEP-SEA SEDIMENTARY CALCITE PRESERVATION ON ATMOSPHERIC CO2 CONCENTRATION
    ARCHER, D
    MAIERREIMER, E
    [J]. NATURE, 1994, 367 (6460) : 260 - 263
  • [7] A timescale for dissolved organic carbon production in equatorial Pacific surface waters
    Archer, D
    Peltzer, ET
    Kirchman, DL
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 1997, 11 (03) : 435 - 452
  • [8] WHAT CONTROLS OPAL PRESERVATION IN TROPICAL DEEP-SEA SEDIMENTS
    ARCHER, D
    LYLE, M
    RODGERS, K
    FROELICH, P
    [J]. PALEOCEANOGRAPHY, 1993, 8 (01): : 7 - 21
  • [9] Atmospheric pCO2 sensitivity to the biological pump in the ocean
    Archer, DE
    Eshel, G
    Winguth, A
    Broecker, W
    Pierrehumbert, R
    Tobis, M
    Jacob, R
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2000, 14 (04) : 1219 - 1230
  • [10] Globalizing results from ocean in situ iron fertilization studies
    Aumont, O.
    Bopp, L.
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2006, 20 (02)