Puncture evolution of Schwarzschild black holes

被引:45
|
作者
Brown, J. David [1 ]
机构
[1] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA
来源
PHYSICAL REVIEW D | 2008年 / 77卷 / 04期
关键词
D O I
10.1103/PhysRevD.77.044018
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The moving puncture method is analyzed for a single, nonspinning black hole. It is shown that the puncture region is not resolved by current numerical codes. As a result, the geometry near the puncture appears to evolve to an infinitely long cylinder of finite areal radius. The puncture itself actually remains at spacelike infinity throughout the evolution. In the limit of infinite resolution the data never become stationary. However, at any reasonable finite resolution the grid points closest to the puncture are rapidly drawn into the black hole interior by the Gamma-driver shift condition. The data can then evolve to a stationary state. These results suggest that the moving puncture technique should be viewed as a type of "natural excision.".
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Mass Evolution of Schwarzschild Black Holes
    Natalí Soler Matubaro de Santi
    Raphael Santarelli
    Brazilian Journal of Physics, 2019, 49 : 897 - 913
  • [2] Mass Evolution of Schwarzschild Black Holes
    Matubaro de Santi, Natali Soler
    Santarelli, Raphael
    BRAZILIAN JOURNAL OF PHYSICS, 2019, 49 (06) : 897 - 913
  • [3] Islands in Schwarzschild black holes
    Hashimoto, Koji
    Iizuka, Norihiro
    Matsuo, Yoshinori
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (06)
  • [4] Quantum evolution of Schwarzschild-de Sitter (Nariai) black holes
    Nojiri, S
    Odintsov, SD
    PHYSICAL REVIEW D, 1999, 59 (04):
  • [5] Covariant perturbations of Schwarzschild black holes
    Clarkson, CA
    Barrett, RK
    CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (18) : 3855 - 3884
  • [6] Counting Schwarzschild and charged black holes
    Halyo, E
    Kol, B
    Rajaraman, A
    Susskind, L
    PHYSICS LETTERS B, 1997, 401 (1-2) : 15 - 20
  • [7] Conformally Schwarzschild cosmological black holes
    Sato, Takuma
    Maeda, Hideki
    Harada, Tomohiro
    CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (21)
  • [8] Statistical entropy of Schwarzschild black holes
    Englert, F
    Rabinovici, E
    PHYSICS LETTERS B, 1998, 426 (3-4) : 269 - 274
  • [9] GRAVITINO PERTURBATIONS IN SCHWARZSCHILD BLACK HOLES
    Fernandez Piedra, Owen Pavel
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2011, 20 (01): : 93 - 109
  • [10] A note on islands in Schwarzschild black holes
    I. Ya. Aref’eva
    I. V. Volovich
    Theoretical and Mathematical Physics, 2023, 214 : 432 - 445