Design and synthesis of hollow NiCo2O4 nanoboxes as anodes for lithium-ion and sodium-ion batteries

被引:80
作者
Chen, Junfen [1 ,2 ,3 ,4 ]
Ru, Qiang [1 ,2 ,3 ,4 ]
Mo, Yudi [1 ,2 ,3 ,4 ]
Hu, Shejun [1 ,2 ,3 ,4 ]
Hou, Xianhua [1 ,2 ,3 ,4 ]
机构
[1] Guangdong Engn Technol Res Ctr Efficient Green En, Guangzhou 510006, Guangdong, Peoples R China
[2] South China Normal Univ, Sch Phys & Telecommun Engn, Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Guangdong, Peoples R China
[3] South China Normal Univ, Sch Phys & Telecommun Engn, Guangzhou 51006, Guangdong, Peoples R China
[4] Minist Educ, Engn Res Ctr Mat & Technol Elect Energy Storage, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
METAL-ORGANIC FRAMEWORKS; HIGH-PERFORMANCE; ELECTROCHEMICAL PERFORMANCE; ZNCO2O4; MICROSPHERES; ELECTRODE MATERIALS; STORAGE BEHAVIOR; FACILE SYNTHESIS; LI; OXIDE; CO3O4;
D O I
10.1039/c6cp02871c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hollow porous NiCo2O4-nanoboxes (NCO-NBs) were synthesized with zeolitic imidazolate framework-67 (ZIF-67) nanocrystals as the template followed by a subsequent annealing treatment. The structure and morphology of the NCO-NBs were characterized using X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy. When tested as potential anode materials for lithium-ion batteries, these porous NCO-NBs with a well-defined hollow structure manifested enhanced performance of Li storage. The discharge capacity of the NCO-NBs remained 1080 mA h g(-1) after 150 cycles at a current rate of 500 mA g(-1) and 884 mA h g(-1) could be obtained at a current density of 2000 mA g(-1) after 200 cycles. Even when cycled at a high density of 8000 mA g(-1), a comparable capacity of 630 mA h g(-1) could be achieved. Meanwhile, the Na storage behavior of NCO-NBs as anode materials of sodium ion batteries (SIBs) was initially investigated and they exhibited a high initial discharge capacity of 826 mA h g(-1), and a moderate capacity retention of 328 mA h g(-1) was retained after 30 cycles. The improved electrochemical performance for NCO-NBs could be attributed to the hierarchical hollow structure and the desirable composition, which provide enough space to alleviate volume expansion during the Li+/Na+ insertion/extraction process and facilitate rapid transport of ions and electrons.
引用
收藏
页码:18949 / 18957
页数:9
相关论文
共 63 条
[1]   Immobilizing Highly Catalytically Active Pt Nanoparticles inside the Pores of Metal-Organic Framework: A Double Solvents Approach [J].
Aijaz, Arshad ;
Karkamkar, Abhi ;
Choi, Young Joon ;
Tsumori, Nobuko ;
Roennebro, Ewa ;
Autrey, Tom ;
Shioyama, Hiroshi ;
Xu, Qiang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (34) :13926-13929
[2]   NiCo2O4 spinel:: First report on a transition metal oxide for the negative electrode of sodium-ion batteries [J].
Alcántara, R ;
Jaraba, M ;
Lavela, P ;
Tirado, JL .
CHEMISTRY OF MATERIALS, 2002, 14 (07) :2847-+
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[5]   Formation and oxidation of nanosized metal particles by electrochemical reaction of Li and Na with NiCo2O4:: X-ray absorption spectroscopic study [J].
Chadwick, Alan V. ;
Savin, Shelley L. P. ;
Fiddy, Steven ;
Alcantara, Ricardo ;
Fernandez Lisbona, Diego ;
Lavela, Pedro ;
Ortiz, Gregorio F. ;
Tirado, Jose L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (12) :4636-4642
[6]   PSA modified 3 D flower-like NiCo2O4 nanorod clusters as anode materials for lithium ion batteries [J].
Chen, Junfen ;
Ru, Qiang ;
Mo, Yudi ;
Hu, Shejun .
RSC ADVANCES, 2015, 5 (90) :73783-73792
[7]   Reduced graphene oxide networks as an effective buffer matrix to improve the electrode performance of porous NiCo2O4 nanoplates for lithium-ion batteries [J].
Chen, Yuejiao ;
Zhuo, Ming ;
Deng, Jiwei ;
Xu, Zhi ;
Li, Qiuhong ;
Wang, Taihong .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (12) :4449-4456
[8]   Graphene improving lithium-ion battery performance by construction of NiCo2O4/graphene hybrid nanosheet arrays [J].
Chen, Yuejiao ;
Zhu, Jian ;
Qu, Baihua ;
Lu, Bingan ;
Xu, Zhi .
NANO ENERGY, 2014, 3 :88-94
[9]   Facilitated Ion Transport in All-Solid-State Flexible Supercapacitors [J].
Choi, Bong Gill ;
Hong, Jinkee ;
Hong, Won Hi ;
Hammond, Paula T. ;
Park, HoSeok .
ACS NANO, 2011, 5 (09) :7205-7213
[10]  
Farha OK, 2010, NAT CHEM, V2, P944, DOI [10.1038/NCHEM.834, 10.1038/nchem.834]