A scalable and robust cationic lipid/polymer hybrid nanoparticle platform for mRNA delivery

被引:35
作者
Meyer, Randall A. [1 ]
Hussmann, G. Patrick [1 ]
Peterson, Norman C. [1 ]
Santos, Jose Luis [1 ]
Tuesca, Anthony D. [1 ]
机构
[1] AstraZeneca, BioPharmaceut Dev, BioPharmaceut R&D, Gaithersburg, MD 20878 USA
关键词
Nanoparticles; Polymers; Lipids; mRNA delivery; Microfluidics; Drug delivery; LIPID NANOPARTICLES; SYSTEMIC DELIVERY; IN-VIVO; THERAPEUTICS; OPTIMIZATION; REPLACEMENT; VACCINES; CELLS; MICE;
D O I
10.1016/j.ijpharm.2021.121314
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
mRNA based gene therapies hold the potential to treat multiple diseases with significant advantages over DNA based therapies, including rapid protein expression and minimized risk of mutagenesis. However, successful delivery of mRNA remains challenging, and clinical translation of mRNA therapeutics has been limited. This study investigated the use of a lipid/polymer hybrid (LPH) nanocarrier for mRNA, designed to address key delivery challenges and shuttle mRNA to targeted tissues. LPH nanocarriers were synthesized using a scalable microfluidic process with a variety of material compositions and mRNA loading strategies. Results show that a combination of permanently ionized and transiently, pH-dependent ionizable cationic lipids had a synergistic effect upon on mRNA gene translation, when compared to each lipid independently. Upon intravenous administration, particles with adsorbed mRNA outperformed particles with encapsulated mRNA for protein expression in the lungs and the spleen despite significant LPH nanoparticle localization to the liver. In contrast, encapsulated particles had higher localized expression when injected intramuscularly with protein expression detectable out to 12 days post injection. Intramuscular administration of particles with OVA mRNA resulted in robust humoral immune response with encapsulated outperforming adsorbed particles in terms of antibody titers at 28 days. These results demonstrate LPH nanocarriers have great potential as a vehicle for mRNA delivery and expression in tissues and that tissue expression and longevity can be influenced by LPH composition and route of administration.
引用
收藏
页数:11
相关论文
共 45 条
[1]   Targeted Delivery of RNAi Therapeutics With Endogenous and Exogenous Ligand-Based Mechanisms [J].
Akinc, Akin ;
Querbes, William ;
De, Soma ;
Qin, June ;
Frank-Kamenetsky, Maria ;
Jayaprakash, K. Narayanannair ;
Jayaraman, Muthusamy ;
Rajeev, Kallanthottathil G. ;
Cantley, William L. ;
Dorkin, J. Robert ;
Butler, James S. ;
Qin, LiuLiang ;
Racie, Timothy ;
Sprague, Andrew ;
Fava, Eugenio ;
Zeigerer, Anja ;
Hope, Michael J. ;
Zerial, Marino ;
Sah, Dinah W. Y. ;
Fitzgerald, Kevin ;
Tracy, Mark A. ;
Manoharan, Muthiah ;
Koteliansky, Victor ;
de Fougerolles, Antonin ;
Maier, Martin A. .
MOLECULAR THERAPY, 2010, 18 (07) :1357-1364
[2]   Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine [J].
Baden, Lindsey R. ;
El Sahly, Hana M. ;
Essink, Brandon ;
Kotloff, Karen ;
Frey, Sharon ;
Novak, Rick ;
Diemert, David ;
Spector, Stephen A. ;
Rouphael, Nadine ;
Creech, C. Buddy ;
McGettigan, John ;
Khetan, Shishir ;
Segall, Nathan ;
Solis, Joel ;
Brosz, Adam ;
Fierro, Carlos ;
Schwartz, Howard ;
Neuzil, Kathleen ;
Corey, Larry ;
Gilbert, Peter ;
Janes, Holly ;
Follmann, Dean ;
Marovich, Mary ;
Mascola, John ;
Polakowski, Laura ;
Ledgerwood, Julie ;
Graham, Barney S. ;
Bennett, Hamilton ;
Pajon, Rolando ;
Knightly, Conor ;
Leav, Brett ;
Deng, Weiping ;
Zhou, Honghong ;
Han, Shu ;
Ivarsson, Melanie ;
Miller, Jacqueline ;
Zaks, Tal .
NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (05) :403-416
[3]   mRNA-based dendritic cell vaccines [J].
Benteyn, Daphne ;
Heirman, Carlo ;
Bonehill, Aude ;
Thielemans, Kris ;
Breckpot, Karine .
EXPERT REVIEW OF VACCINES, 2015, 14 (02) :161-176
[4]   Influence of cationic lipid concentration on properties of lipid-polymer hybrid nanospheres for gene delivery [J].
Bose, Rajendran Jc ;
Arai, Yoshie ;
Ahn, Jong Chan ;
Park, Hansoo ;
Lee, Soo-Hong .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2015, 10 :5367-5382
[5]   Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing [J].
Cheng, Qiang ;
Wei, Tuo ;
Farbiak, Lukas ;
Johnson, Lindsay T. ;
Dilliard, Sean A. ;
Siegwart, Daniel J. .
NATURE NANOTECHNOLOGY, 2020, 15 (04) :313-+
[6]   Cationic lipid-assisted nanoparticles for delivery of mRNA cancer vaccine [J].
Fan, Ya-Nan ;
Li, Min ;
Luo, Ying-Li ;
Chen, Qian ;
Wang, Li ;
Zhang, Hou-Bing ;
Shen, Song ;
Gu, Zhen ;
Wang, Jun .
BIOMATERIALS SCIENCE, 2018, 6 (11) :3009-3018
[7]   Synthesis and Biological Evaluation of Ionizable Lipid Materials for the In Vivo Delivery of Messenger RNA to B Lymphocytes [J].
Fenton, Owen S. ;
Kauffman, Kevin J. ;
Kaczmarek, James C. ;
McClellan, Rebecca L. ;
Jhunjhunwala, Siddharth ;
Tibbitt, Mark W. ;
Zeng, Manhao D. ;
Appel, Eric A. ;
Dorkin, Joseph R. ;
Mir, Faryal F. ;
Yang, Jung H. ;
Oberli, Matthias A. ;
Heartlein, Michael W. ;
DeRosa, Frank ;
Langer, Robert ;
Anderson, Daniel G. .
ADVANCED MATERIALS, 2017, 29 (33)
[8]   Rapid and scale-independent microfluidic manufacture of liposomes entrapping protein incorporating in-line purification and at-line size monitoring [J].
Forbes, Neil ;
Hussain, Maryam T. ;
Briuglia, Maria L. ;
Edwards, Darren P. ;
ter Horst, Joop H. ;
Szita, Nicolas ;
Perrie, Yvonne .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2019, 556 :68-81
[9]   Modeling the proton sponge hypothesis: examining proton sponge effectiveness for enhancing intracellular gene delivery through multiscale modeling [J].
Freeman, Eric C. ;
Weiland, Lisa M. ;
Meng, Wilson S. .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2013, 24 (04) :398-416
[10]   Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems [J].
Guan, S. ;
Rosenecker, J. .
GENE THERAPY, 2017, 24 (03) :133-143