Reagent- and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS)

被引:79
作者
Li, Ming [1 ]
Du, Yong [2 ]
Zhao, Fusheng [1 ]
Zeng, Jianbo [1 ]
Mohan, Chandra [2 ]
Shih, Wei-Chuan [1 ,2 ]
机构
[1] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77024 USA
[2] Univ Houston, Dept Biomed Engn, Houston, TX 77024 USA
来源
BIOMEDICAL OPTICS EXPRESS | 2015年 / 6卷 / 03期
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
QUANTITATIVE-ANALYSIS; TUNABLE PLASMONICS; SPECTROSCOPY; PERFORMANCE; MICROSCOPY; ACID;
D O I
10.1364/BOE.6.000849
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We report a novel reagent-and separation-free method for urine creatinine concentration measurement using stamping surface enhanced Raman scattering (S-SERS) technique with nanoporous gold disk (NPGD) plasmonic substrates, a label-free, multiplexed molecular sensing and imaging technique recently developed by us. The performance of this new technology is evaluated by the detection and quantification of creatinine spiked in three different liquids: creatinine in water, mixture of creatinine and urea in water, and creatinine in artificial urine within physiologically relevant concentration ranges. Moreover, the potential application of our method is demonstrated by creatinine concentration measurements in urine samples collected from a mouse model of nephritis. The limit of detection of creatinine was 13.2 nM (0.15 mu g/dl) and 0.68 mg/dl in water and urine, respectively. Our method would provide an alternative tool for rapid, cost-effective, and reliable urine analysis for non-invasive diagnosis and monitoring of renal function. (C) 2015 Optical Society of America.
引用
收藏
页码:849 / 858
页数:10
相关论文
共 44 条
  • [1] [Anonymous], 2009, In Vivo Glucose Sensing, DOI DOI 10.1002/9780470567319.CH14
  • [2] Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles
    Arnob, Md Masud Parvez
    Zhao, Fusheng
    Zeng, Jianbo
    Santos, Greggy M.
    Li, Ming
    Shih, Wei-Chuan
    [J]. NANOSCALE, 2014, 6 (21) : 12470 - 12475
  • [3] Intrinsic Raman spectroscopy for quantitative biological spectroscopy Part II: Experimental applications
    Bechtel, Kate L.
    Shih, Wei-Chuan
    Feld, Michael S.
    [J]. OPTICS EXPRESS, 2008, 16 (17): : 12737 - 12745
  • [4] Brunzel N.A., 1994, FUNDAMENTALS URINE B
  • [5] Surface-enhanced Raman scattering
    Campion, A
    Kambhampati, P
    [J]. CHEMICAL SOCIETY REVIEWS, 1998, 27 (04) : 241 - 250
  • [6] Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer
    Dou, X
    Yamaguchi, Y
    Yamamoto, H
    Doi, S
    Ozaki, Y
    [J]. VIBRATIONAL SPECTROSCOPY, 1996, 13 (01) : 83 - 89
  • [7] Surface-enhanced Raman spectroscopy
    Haynes, CL
    McFarland, AD
    Van Duyne, RP
    [J]. ANALYTICAL CHEMISTRY, 2005, 77 (17) : 338A - 346A
  • [8] Multivariate calibration for the determination of analytes in urine using mid-infrared attenuated total reflection spectroscopy
    Heise, HM
    Voigt, G
    Lampen, P
    Küpper, L
    Rudloff, S
    Werner, G
    [J]. APPLIED SPECTROSCOPY, 2001, 55 (04) : 434 - 443
  • [9] Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis
    Kho, Kiang Wei
    Qing, Kristin Zhu Mei
    Shen, Ze Xiang
    Ahmad, Iman Binte
    Lim, Samanta Sing Chin
    Mhaisalkar, Subodh
    White, Timothy John
    Watt, Frank
    Soo, Kee Chee
    Olivo, Malini
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2008, 13 (05)
  • [10] QUALITATIVE AND QUANTITATIVE-ANALYSIS OF URIC-ACID, CREATINE AND CREATININE TOGETHER WITH CARBOHYDRATES IN BIOLOGICAL-MATERIAL BY HPTLC
    KLAUS, R
    FISCHER, W
    HAUCK, HE
    [J]. CHROMATOGRAPHIA, 1991, 32 (7-8) : 307 - 316