Optimized fringe removal algorithm for absorption images

被引:25
作者
Niu, Linxiao [1 ]
Guo, Xinxin [1 ]
Zhan, Yuan [1 ]
Chen, Xuzong [1 ]
Liu, W. M. [2 ]
Zhou, Xiaoji [1 ]
机构
[1] Peking Univ, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
ATOMS; LOCALIZATION;
D O I
10.1063/1.5040669
中图分类号
O59 [应用物理学];
学科分类号
摘要
Optical absorption imaging is a basic detection technique for obtaining information from matter waves, in which the absorption signal can be obtained by comparing the recorded detection light field with the light field in the presence of absorption, thereby giving the spatial distribution of the atoms. The noise in detection arises mainly from differences between the two recorded light field distributions, which is difficult to avoid in experiments. In this work, we present an optimized fringe removal algorithm, developing a method to generate an ideal reference light field, avoiding the noise generated by the light field difference, and suppressing the noise signal to the theoretical limit. Using principal component analysis, we explore the optimal calculation area and how to remove noise information from the basis to allow optimal performance and speed. As an example, we consider scattering atomic peaks with a small number of atoms in a triangular lattice. Compared with the conventional processing method, our algorithm can reduce the measured atomic temperature variance by more than three times, giving a more reliable result. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 27 条
[1]   Principal component analysis [J].
Abdi, Herve ;
Williams, Lynne J. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04) :433-459
[2]   Ultracold quantum gases in triangular optical lattices [J].
Becker, C. ;
Soltan-Panahi, P. ;
Kronjaeger, J. ;
Doescher, S. ;
Bongs, K. ;
Sengstock, K. .
NEW JOURNAL OF PHYSICS, 2010, 12
[3]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[4]   Optics and interferometry with atoms and molecules [J].
Cronin, Alexander D. ;
Schmiedmayer, Joerg ;
Pritchard, David E. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (03) :1051-1129
[5]   Crossover from 2D to 3D in a Weakly Interacting Fermi Gas [J].
Dyke, P. ;
Kuhnle, E. D. ;
Whitlock, S. ;
Hu, H. ;
Mark, M. ;
Hoinka, S. ;
Lingham, M. ;
Hannaford, P. ;
Vale, C. J. .
PHYSICAL REVIEW LETTERS, 2011, 106 (10)
[6]   Measurement of s-wave scattering lengths in a two-component Bose-Einstein condensate [J].
Egorov, M. ;
Opanchuk, B. ;
Drummond, P. ;
Hall, B. V. ;
Hannaford, P. ;
Sidorov, A. I. .
PHYSICAL REVIEW A, 2013, 87 (05)
[7]   A compact, transportable, microchip-based system for high repetition rate production of Bose-Einstein condensates [J].
Farkas, Daniel M. ;
Hudek, Kai M. ;
Salim, Evan A. ;
Segal, Stephen R. ;
Squires, Matthew B. ;
Anderson, Dana Z. .
APPLIED PHYSICS LETTERS, 2010, 96 (09)
[8]   Temperature and localization of atoms in three-dimensional optical lattices [J].
Gatzke, M ;
Birkl, G ;
Jessen, PS ;
Kastberg, A ;
Rolston, SL ;
Phillips, WD .
PHYSICAL REVIEW A, 1997, 55 (06) :R3987-R3990
[9]   Observing the Dynamics of Dipole-Mediated Energy Transport by Interaction-Enhanced Imaging [J].
Guenter, G. ;
Schempp, H. ;
Robert-de-Saint-Vincent, M. ;
Gavryusev, V. ;
Helmrich, S. ;
Hofmann, C. S. ;
Whitlock, S. ;
Weidemueller, M. .
SCIENCE, 2013, 342 (6161) :954-956
[10]   Simultaneous Precision Gravimetry and Magnetic Gradiometry with a Bose-Einstein Condensate: A High Precision, Quantum Sensor [J].
Hardman, K. S. ;
Everitt, P. J. ;
McDonald, G. D. ;
Manju, P. ;
Wigley, P. B. ;
Sooriyabandara, M. A. ;
Kuhn, C. C. N. ;
Debs, J. E. ;
Close, J. D. ;
Robins, N. P. .
PHYSICAL REVIEW LETTERS, 2016, 117 (13)