Nonparametric Predictive Inference for Exposure Assessment

被引:1
|
作者
Roelofs, V. J. [1 ]
Coolen, F. P. A. [1 ]
Hart, A. D. M. [1 ]
机构
[1] Food & Environm Res Agcy, York YO41 1LZ, N Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Bayesian methods; exposure assessment; M functions; nonparametric predictive inference;
D O I
10.1111/j.1539-6924.2010.01490.x
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Exposure assessment for food and drink consumption requires the combining of information about people's consumption of products with concentration data sets to provide predictions for chemical intake by humans. In this article, we present a method called nonparametric predictive inference (NPI) for exposure assessment. NPI is a distribution-free method relying only on Hill's assumption A((n)). Effectively, A((n)) is a postdata exchangeability assumption, which is a natural starting point for nonparametric statistics. For further discussion we refer to works by Hill and Coolen. We illustrate how NPI can be implemented to produce predictions for an individual's exposure based on consumption, body weight, and concentration data. NPI has the advantage that we do not have to assume a distribution to implement it. There may, however, be information available to suggest a distribution for a random quantity. Therefore, we present an NPI-Bayes hybrid method where this information can be taken into account by using Bayesian methods while using NPI for the other random quantities in the model.
引用
收藏
页码:218 / 227
页数:10
相关论文
共 50 条
  • [1] Nonparametric Predictive Inference for Ordinal Data
    Coolen, F. P. A.
    Coolen-Schrijner, P.
    Coolen-Maturi, T.
    Elkhafifi, F. F.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (19) : 3478 - 3496
  • [2] Nonparametric predictive inference for stock returns
    Baker, Rebecca M.
    Coolen-Maturi, Tahani
    Coolen, Frank P. A.
    JOURNAL OF APPLIED STATISTICS, 2017, 44 (08) : 1333 - 1349
  • [3] Nonparametric predictive inference for competing risks
    Maturi, T. A.
    Coolen-Schrijner, P.
    Coolen, F. P. A.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2010, 224 (O1) : 11 - 26
  • [4] Nonparametric predictive inference for subcategory data
    Baker, R. M.
    Coolen-Schrijner, P.
    Coolen, F. P. A.
    Augustin, T.
    ISIPTA '11 - PROCEEDINGS OF THE SEVENTH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY: THEORIES AND APPLICATIONS, 2011, : 51 - 60
  • [5] Predictive inference for bivariate data: Combining nonparametric predictive inference for marginals with an estimated copula
    Coolen-Maturi T.
    Coolen F.P.A.
    Muhammad N.
    Journal of Statistical Theory and Practice, 2016, 10 (3) : 515 - 538
  • [6] Nonparametric predictive inference for binary diagnostic tests
    Tahani Coolen-Maturi
    Pauline Coolen-Schrijner
    Frank P. A. Coolen
    Journal of Statistical Theory and Practice, 2012, 6 (4) : 665 - 680
  • [7] Nonparametric Predictive Inference for Binary Diagnostic Tests
    Coolen-Maturi, Tahani
    Coolen-Schrijner, Pauline
    Coolen, Frank P. A.
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2012, 6 (04) : 665 - 680
  • [8] Nonparametric predictive inference for diagnostic test thresholds
    Coolen-Maturi, Tahani
    Coolen, Frank P. A.
    Alabdulhadi, Manal
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (03) : 697 - 725
  • [9] Bayesian nonparametric predictive inference and bootstrap techniques
    Muliere, P
    Secchi, P
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1996, 48 (04) : 663 - 673
  • [10] Nonparametric Predictive Inference for Discrete Lifetime Data
    Coolen, Frank P. A.
    Coolen-Maturi, Tahani
    Mahnashi, Ali M. Y.
    MATHEMATICS, 2024, 12 (22)