Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation

被引:507
|
作者
Xiong, Yu [1 ,2 ]
Dong, Juncai [3 ]
Huang, Zheng-Qing [4 ]
Xin, Pingyu [1 ]
Chen, Wenxing [1 ]
Wang, Yu [5 ]
Li, Zhi [1 ]
Jin, Zhao [6 ,7 ]
Xing, Wei [6 ,7 ]
Zhuang, Zhongbin [8 ]
Ye, Jinyu [9 ]
Wei, Xing [10 ]
Cao, Rui [11 ]
Gu, Lin [12 ]
Sun, Shigang [9 ]
Zhuang, Lin [10 ]
Chen, Xiaoqing [2 ]
Yang, Hua [2 ]
Chen, Chen [1 ]
Peng, Qing [1 ]
Chang, Chun-Ran [4 ]
Wang, Dingsheng [1 ]
Li, Yadong [1 ]
机构
[1] Tsinghua Univ, Dept Chem, Beijing, Peoples R China
[2] Cent South Univ, Coll Chem & Chem Engn, Changsha, Hunan, Peoples R China
[3] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing, Peoples R China
[4] Xi An Jiao Tong Univ, Sch Chem Engn & Technol, Shaanxi Key Lab Energy Chem Proc Intensificat, Xian, Peoples R China
[5] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai Synchrotron Radiat Facil, Shanghai, Peoples R China
[6] Chinese Acad Sci, Changchun Inst Appl Chem, Lab Adv Power Sources, Changchun, Jilin, Peoples R China
[7] Jilin Prov Key Lab Low Carbon Chem Power Sources, Changchun, Jilin, Peoples R China
[8] Beijing Univ Chem Technol, Beijing Adv Innovat Ctr Soft Matter Sci & Engn, State Key Lab Organ Inorgan Composites, Beijing, Peoples R China
[9] Xiamen Univ, Coll Chem & Chem Engn, Dept Chem, State Key Lab Phys Chem Solid Surfaces, Xiamen, Peoples R China
[10] Wuhan Univ, Coll Chem & Mol Sci, Hubei Key Lab Electrochem Power Sources, Wuhan, Peoples R China
[11] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA USA
[12] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划; 中国博士后科学基金;
关键词
INITIO MOLECULAR-DYNAMICS; OXYGEN REDUCTION; PALLADIUM NANOSHEETS; CATALYSTS; IDENTIFICATION; TRANSITION; GRAPHENE; ELECTROOXIDATION; DECOMPOSITION; CONVERSION;
D O I
10.1038/s41565-020-0665-x
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
To meet the requirements of potential applications, it is of great importance to explore new catalysts for formic acid oxidation that have both ultra-high mass activity and CO resistance. Here, we successfully synthesize atomically dispersed Rh on N-doped carbon (SA-Rh/CN) and discover that SA-Rh/CN exhibits promising electrocatalytic properties for formic acid oxidation. The mass activity shows 28- and 67-fold enhancements compared with state-of-the-art Pd/C and Pt/C, respectively, despite the low activity of Rh/C. Interestingly, SA-Rh/CN exhibits greatly enhanced tolerance to CO poisoning, and Rh atoms in SA-Rh/CN resist sintering after long-term testing, resulting in excellent catalytic stability. Density functional theory calculations suggest that the formate route is more favourable on SA-Rh/CN. According to calculations, the high barrier to produce CO, together with the relatively unfavourable binding with CO, contribute to its CO tolerance. Atomically dispersed Rh on N-doped carbon exhibits 28- and 67-fold enhancements compared with state-of-the-art Pd/C and Pt/C, despite the low activity of Rh/C. The Rh single atoms exhibit high tolerance to CO poisoning compared to Rh nanoparticles.
引用
收藏
页码:390 / +
页数:11
相关论文
共 50 条
  • [11] Single-atom palladium anchored N-doped carbon enhanced electrochemical detection of furazolidone
    Han, Chunxiao
    Yi, Wenwen
    Li, Zhongping
    Dong, Chuan
    Zhao, Huazhang
    Liu, Meng
    ELECTROCHIMICA ACTA, 2023, 447
  • [12] Spectroelectrochemical Evaluation of Rh Microparticles as Electrocatalyst for Carbon Monoxide and Formic Acid Oxidation
    Ortiz, R.
    Marquez, O. P.
    Marquez, J.
    Gutierrez, Claudio
    PORTUGALIAE ELECTROCHIMICA ACTA, 2006, 24 (01) : 105 - 116
  • [13] Folic acid self-assembly synthesis of ultrathin N-doped carbon nanosheets with single-atom metal catalysts
    Wang, Xuewan
    Sun, Jinmeng
    Li, Tingting
    Song, Zhongxin
    Wu, Dan
    Zhao, Bin
    Xiang, Kun
    Ai, Wei
    Fu, Xian-Zhu
    Luo, Jing-Li
    ENERGY STORAGE MATERIALS, 2021, 36 : 409 - 416
  • [14] π-Adsorption promoted electrocatalytic acetylene semihydrogenation on single-atom Ni dispersed N-doped carbon
    Ma, Wenxiu
    Chen, Zhe
    Bu, Jun
    Liu, Zhenpeng
    Li, Jinjin
    Yan, Chen
    Cheng, Lin
    Zhang, Lei
    Zhang, Hepeng
    Zhang, Jichao
    Wang, Tao
    Zhang, Jian
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (11) : 6122 - 6128
  • [16] Rh single-atom nanozymes for efficient ascorbic acid oxidation and detection
    Shi, Xiaoyue
    Li, Juan
    Xiong, Yu
    Liu, Ziyu
    Zhan, Jinhua
    Cai, Bin
    NANOSCALE, 2023, 15 (14) : 6629 - 6635
  • [17] Iron Single-Atom Anchored on N-Doped Carbon Nanozymes for Chlorpyrifos Detection and Antibacterial Applications
    Ren, Enxiang
    Zhang, Xing
    Lu, Guo-Ping
    Sohail, Muhammad
    Hu, Jun
    Chen, Zhong
    Fan, Daidi
    Lin, Yamei
    ACS APPLIED NANO MATERIALS, 2023, 6 (16) : 15038 - 15047
  • [18] Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy
    Zhi Li
    Yuanjun Chen
    Shufang Ji
    Yan Tang
    Wenxing Chen
    Ang Li
    Jie Zhao
    Yu Xiong
    Yuen Wu
    Yue Gong
    Tao Yao
    Wei Liu
    Lirong Zheng
    Juncai Dong
    Yu Wang
    Zhongbin Zhuang
    Wei Xing
    Chun-Ting He
    Chao Peng
    Weng-Chon Cheong
    Qiheng Li
    Maolin Zhang
    Zheng Chen
    Ninghua Fu
    Xin Gao
    Wei Zhu
    Jiawei Wan
    Jian Zhang
    Lin Gu
    Shiqiang Wei
    Peijun Hu
    Jun Luo
    Jun Li
    Chen Chen
    Qing Peng
    Xiangfeng Duan
    Yu Huang
    Xiao-Ming Chen
    Dingsheng Wang
    Yadong Li
    Nature Chemistry, 2020, 12 : 764 - 772
  • [19] Hydrochlorination of acetylene on single-atom Pd/N-doped carbon catalysts: Importance of pyridinic-N synergism
    Wang, Bolin
    Yue, Yuxue
    Jin, Chunxiao
    Lu, Jinyue
    Wang, Saisai
    Yu, Lu
    Guo, Lingling
    Li, Rongrong
    Hu, Zhong-Ting
    Pan, Zhiyan
    Zhao, Jia
    Li, Xiaonian
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 272
  • [20] Pd single atom supported on N-doped egg tray graphene as formic acid dehydrogenation catalysts
    Liu, Cheng
    Liu, Wei
    Miao, Mao-sheng
    Liu, Jing-yao
    2D MATERIALS, 2023, 10 (02)