General decay rate estimates for viscoelastic dissipative systems

被引:176
作者
Cavalcanti, M. M.
Cavalcanti, V. N. Domingos
Martinez, P.
机构
[1] Univ Estadual Maringa, BR-87020900 Maringa, Parana, Brazil
[2] Univ Estadual Maringa, Dept Matemat, BR-87020900 Maringa, Parana, Brazil
[3] Univ Toulouse 3, F-31062 Toulouse, France
关键词
nonlinear stabilization; asymptotic behavior at zero and infinity;
D O I
10.1016/j.na.2006.10.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The linear viscoelastic equation is considered. We prove uniform decay rates of the energy by assuming a nonlinear feedback acting on the boundary, without imposing any restrictive growth assumption on the damping term and strongly weakening the usual assumptions on the relaxation function. Our estimate depends both on the behavior of the damping term near zero and on the behavior of the relaxation function at infinity. The proofs are based on the multiplier method and on a general lemma about convergent and divergent series for obtaining the uniform decay rates. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:177 / 193
页数:17
相关论文
共 25 条
[1]   Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain [J].
Aassila, M ;
Cavalcanti, MM ;
Soriano, JA .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (05) :1581-1602
[2]  
[Anonymous], P 5 IFAC S CONTR DIS
[3]  
Baretto R., 1996, J ELASTICITY, V44, P61, DOI DOI 10.1007/BF00042192
[4]  
CAVALCANTI M. M., 2001, Differential and Integral Equations, V14, P85
[5]  
Cavalcanti M.M., 2002, DIFFERENTIAL INTEGRA, V15, P731
[6]  
DAFERMOS CM, 1970, ARCH RATION MECH AN, V37, P297
[7]   AN ABSTRACT VOLTERRA EQUATION WITH APPLICATIONS TO LINEAR VISCOELASTICITY [J].
DAFERMOS, CM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1970, 7 (03) :554-&
[8]  
DOETSCH G, 1961, ANLEITUNG ZUM PRAKIT
[9]  
Fabrizio M., 2002, Appl. Analysis, V81, P1245, DOI [10.1080/0003681021000035588, DOI 10.1080/0003681021000035588]
[10]  
HARAUX A, 1978, CR ACAD SCI A MATH, V287, P507