A multidimensional diffusion coefffiicient determination problem for the time-fractional equation

被引:18
作者
Durdiev, Durdimurod [1 ]
Rahmonov, Askar [1 ,2 ]
机构
[1] Acad Sci Uzbek, Bukhara Branch, Inst Math, Bukhara, Uzbekistan
[2] Bukhara State Univ, Fac Phys & Math, Dept Differential Equat, Bukhara, Uzbekistan
关键词
Diffusion equation; Gerasimov-Caputo fractional derivative; overdetermination integral condition; H?lder space; integral equation;
D O I
10.55730/1300-0098.3266
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a multidimensional inverse problem for a fractional diffusion equation. The inverse problem is reduced to the equivalent integral equation. For solving this equation the Schauder principle is applied. The local existence and uniqueness results are obtained.
引用
收藏
页码:2250 / 2263
页数:15
相关论文
共 31 条
[1]  
Aleroev TS, 2013, ELECTRON J DIFFER EQ
[2]  
[Anonymous], 1968, Translations of Mathematical Monographs
[3]  
[Anonymous], 1992, IDEAS METHODS MATH P
[4]  
[Anonymous], 1997, Fractals and Fractional Calculus in Continuum Mechanics
[5]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[6]  
[Anonymous], 2001, Ph.D. thesis
[7]  
Baeumer B, 2001, Fractional Calculus and Applied Analysis, V4, P481
[8]  
Bazhlekova E., 1998, Fract. Calc. Appl. Anal, V1, P255
[9]   Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation [J].
Cheng, Jin ;
Nakagawa, Junichi ;
Yamamoto, Masahiro ;
Yamazaki, Tomohiro .
INVERSE PROBLEMS, 2009, 25 (11)
[10]   Cauchy problem for fractional diffusion equations [J].
Eidelman, SD ;
Kochubei, AN .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 199 (02) :211-255