Signal-to-Noise Ratio Improvement in Dynamic Contrast-enhanced CT and MR Imaging with Automated Principal Component Analysis Filtering

被引:15
|
作者
Balvay, Daniel [1 ,2 ]
Kachenoura, Nadjia [3 ]
Espinoza, Sophie [1 ,2 ,4 ]
Thomassin-Naggara, Isabelle [1 ]
Fournier, Laure S. [1 ,2 ,4 ]
Clement, Olivier [1 ,2 ,4 ]
Cuenod, Charles-Andre [1 ,2 ,4 ]
机构
[1] Paris Cardiovasc Res Ctr PARCC, INSERM, U970, F-75015 Paris, France
[2] Univ Paris 05, Paris, France
[3] Univ Paris 06, INSERM, U678, UPMC, Paris, France
[4] Hop Europeen Georges Pompidou, Assistance Publ Hop Paris, Dept Radiol, Paris, France
关键词
MAGNETIC-RESONANCE; TUMOR PERFUSION; TREATMENT RESPONSE; DCE-MRI; ANGIOGENESIS; PERMEABILITY; CANCER; INHIBITOR;
D O I
10.1148/radiol.10100231
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To develop a new automated filtering technique and to evaluate its ability to compensate for the known low contrast-to-noise ratio (CNR) in dynamic contrast material-enhanced (DCE) magnetic resonance (MR) and computed tomographic (CT) data, without substantial loss of information. Materials and Methods: Clinical data acquisition for this study was approved by the institutional review board. Principal component analysis (PCA) was combined with the fraction of residual information (FRI) criterion to optimize the balance between noise reduction efficiency and information conservation. The PCA FRI filter was evaluated in 15 DCE MR imaging data sets and 15 DCE CT data sets by two radiologists who performed visual analysis and quantitative assessment of noise reduction after filtering. Results: Visual evaluation revealed a substantial noise reduction while conserving information in 90% of MR imaging cases and 87% of CT cases for image analysis and in 93% of MR imaging cases and 90% of CT cases for signal analysis. Efficient denoising enabled improvement in structure characterization in 60% of MR imaging cases and 77% of CT cases. After filtering, CNR was improved by 2.06 +/- 0.89 for MR imaging (P < .01) and by 5.72 +/- 4.82 for CT (P < .01). Conclusion: This PCA FRI filter demonstrates noise reduction efficiency and information conservation for both DCE MR data and DCE CT data. FRI analysis enabled automated optimization of the parameters for the PCA filter and provided an optional visual control of residual information losses. The robust and fast PCA FRI filter may improve qualitative or quantitative analysis of DCE imaging in a clinical context. (C)RSNA, 2010 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.10100231/-/DC1
引用
收藏
页码:435 / 445
页数:11
相关论文
共 50 条
  • [21] Dynamic Contrast-Enhanced MR Imaging of the Liver: Current Status and Future Directions
    Do, Richard Kinh Gian
    Rusinek, Henry
    Taouli, Bachir
    MAGNETIC RESONANCE IMAGING CLINICS OF NORTH AMERICA, 2009, 17 (02) : 339 - +
  • [22] Dynamic contrast-enhanced MR imaging to assess physiologic variations of myometrial perfusion
    Thomassin-Naggara, Isabelle
    Balvay, Daniel
    Cuenod, Charles A.
    Darai, Emile
    Marsault, Claude
    Bazot, Marc
    EUROPEAN RADIOLOGY, 2010, 20 (04) : 984 - 994
  • [23] Reproducibility of Dynamic Contrast-enhanced MR Imaging: Why We Should Care
    Goh, Vicky
    Schaeffter, Tobias
    Leach, Martin
    RADIOLOGY, 2013, 266 (03) : 698 - 700
  • [24] Dynamic Contrast-enhanced MR Imaging Features if the Normal Central Zone of the Prostate
    Hansford, Barry G.
    Karademir, Ibrahim
    Peng, Yahui
    Jiang, Yulei
    Karczmar, Gregory
    Thomas, Stephen
    Yousuf, Ambereen
    Antic, Tatjana
    Eggener, Scott
    Oto, Aytekin
    ACADEMIC RADIOLOGY, 2014, 21 (05) : 569 - 577
  • [25] Dynamic Contrast-enhanced MR Imaging of Carotid Atherosclerotic Plaque: Model Selection, Reproducibility, and Validation
    Gaens, Michaela E.
    Backes, Walter H.
    Rozel, Stefan
    Lipperts, Matthijs
    Sanders, Stefan N.
    Jaspers, Karolien
    Cleutjens, Jacques P. M.
    Sluimer, Judith C.
    Heeneman, Sylvia
    Daemen, Mat J. A. P.
    Welten, Rob J. T. J.
    Daemen, Jan-Willem H.
    Wildberger, Joachim E.
    Kwee, Robert M.
    Kooi, M. Eline
    RADIOLOGY, 2013, 266 (01) : 271 - 279
  • [26] Automated lesion detection in dynamic contrast-enhanced magnetic resonance imaging of breast
    Liang, Xi
    Kotagiri, Ramamohanarao
    Frazer, Helen
    Yang, Qing
    MEDICAL IMAGING 2015: COMPUTER-AIDED DIAGNOSIS, 2015, 9414
  • [27] Intravoxel incoherent motion MR imaging for breast lesions: comparison and correlation with pharmacokinetic evaluation from dynamic contrast-enhanced MR imaging
    Liu, Chunling
    Wang, Kun
    Chan, Queenie
    Liu, Zaiyi
    Zhang, Jine
    He, Hui
    Zhang, Shuixing
    Liang, Changhong
    EUROPEAN RADIOLOGY, 2016, 26 (11) : 3888 - 3898
  • [28] Diagnostic Accuracy of a Convolutional Neural Network Assessment of Solitary Pulmonary Nodules Compared With PET With CT Imaging and Dynamic Contrast-Enhanced CT Imaging Using Unenhanced and Contrast-Enhanced CT Imaging
    Weir-McCall, Jonathan R.
    Debruyn, Elise
    Harris, Scott
    Qureshi, Nagmi R.
    Rintoul, Robert C.
    Gleeson, Fergus, V
    Gilbert, Fiona J.
    CHEST, 2023, 163 (02) : 444 - 454
  • [29] Synovitis in Patients with Early Inflammatory Arthritis Monitored with Quantitative Analysis of Dynamic Contrast-enhanced Optical Imaging and MR Imaging
    Meier, Reinhard
    Thuermel, Klaus
    Noel, Peter B.
    Moog, Philipp
    Sievert, Matti
    Ahari, Carmen
    Nasirudin, Radin A.
    Golovko, Daniel
    Haller, Bernhard
    Ganter, Carl
    Wildgruber, Moritz
    Schaeffeler, Christoph
    Waldt, Simone
    Rummeny, Ernst J.
    RADIOLOGY, 2014, 270 (01) : 176 - 185
  • [30] Tumoral and Nontumoral Pancreas: Correlation between Quantitative Dynamic Contrast-enhanced MR Imaging and Histopathologic Parameters
    Bali, Maria A.
    Metens, Thierry
    Denolin, Vincent
    Delhaye, Myriam
    Demetter, Pieter
    Closset, Jean
    Matos, Celso
    RADIOLOGY, 2011, 261 (02) : 456 - 466