Online Optimization With Predictions and Switching Costs: Fast Algorithms and the Fundamental Limit

被引:43
作者
Li, Yingying [1 ]
Qu, Guannan [2 ]
Li, Na [1 ]
机构
[1] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] CALTECH, Pasadena, CA 91125 USA
关键词
Prediction algorithms; Switches; Heuristic algorithms; Cost function; Task analysis; Predictive models; Predictive control; Online optimization; optimization; optimization algorithms; time varying systems; SCHEME;
D O I
10.1109/TAC.2020.3040249
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article considers online optimization with a finite prediction window of cost functions and additional switching costs on the decisions. We study the fundamental limits of dynamic regret of any online algorithm for both the with-prediction and the no-prediction cases. Besides, we propose two gradient-based online algorithms: receding horizon gradient descent (RHGD) and receding horizon accelerated gradient (RHAG); and provide their regret upper bounds. RHAG's regret upper bound is close to the lower bound, indicating the tightness of our lower bound and that our RHAG is near-optimal. Finally, we conduct numerical experiments to complement the theoretical results.
引用
收藏
页码:4761 / 4768
页数:8
相关论文
共 28 条
  • [1] On convergence and performance certification of a continuous-time economic model predictive control scheme with time-varying performance index
    Alessandretti, Andrea
    Aguiar, A. Pedro
    Jones, Colin N.
    [J]. AUTOMATICA, 2016, 68 : 305 - 313
  • [2] Alessio A, 2009, LECT NOTES CONTR INF, V384, P345, DOI 10.1007/978-3-642-01094-1_29
  • [3] Theoretical advances on Economic Model Predictive Control with time-varying costs
    Angeli, David
    Casavola, Alessandro
    Tedesco, Francesco
    [J]. ANNUAL REVIEWS IN CONTROL, 2016, 41 : 218 - 224
  • [4] [Anonymous], 2016, Introduction to Online Convex Optimization
  • [5] [Anonymous], 2012, Logistic regression
  • [6] Non-Stationary Stochastic Optimization
    Besbes, Omar
    Gur, Yonatan
    Zeevi, Assaf
    [J]. OPERATIONS RESEARCH, 2015, 63 (05) : 1227 - 1244
  • [7] Chen NJ, 2016, SIGMETRICS/PERFORMANCE 2016: PROCEEDINGS OF THE SIGMETRICS/PERFORMANCE JOINT INTERNATIONAL CONFERENCE ON MEASUREMENT AND MODELING OF COMPUTER SCIENCE, P193, DOI [10.1145/2964791.2901464, 10.1145/2896377.2901464]
  • [8] Diehl M, 2005, IEE P-CONTR THEOR AP, V152, P296, DOI 10.1049/ip-cta:20040008
  • [9] Economic MPC for a Changing Economic Criterion for Linear Systems
    Ferramosca, Antonio
    Limon, Daniel
    Camacho, Eduardo F.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (10) : 2657 - 2667
  • [10] Goel Gautam, 2019, PR MACH LEARN RES, V89, P2504