Adaptive Finite Element Method for Dirichlet Boundary Control of Elliptic Partial Differential Equations

被引:2
|
作者
Du, Shaohong [1 ]
Cai, Zhiqiang [2 ]
机构
[1] Chongqing Jiaotong Univ, Sch Math & Stat, Chongqing 400074, Peoples R China
[2] Purdue Univ, Dept Math, 150 N Univ St, W Lafayette, IN 47907 USA
关键词
Dirichlet boundary control problem; A coupling system of the state and adjoint state; The KKT system; Equivalence; A posteriori error estimates; Reliability and efficiency; POSTERIORI ERROR ESTIMATION; NUMERICAL APPROXIMATION; ESTIMATOR;
D O I
10.1007/s10915-021-01644-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Dirichlet boundary control problem of elliptic partial differential equations, and get a coupling system of the state and adjoint state by cancelling the control variable in terms of the control rule, and prove that this coupling system is equivalent to the known Karush-Kuhn-Tucker (KKT) system. For corresponding finite element approximation, we find a measure of the numerical errors by employing harmonic extension, based on this measure, we develop residual-based a posteriori error analytical technique for the Dirichlet boundary control problem. The derived estimators for the coupling system and the KKT system are proved to be reliable and efficient over adaptive mesh. Numerical examples are presented to validate our theory.
引用
收藏
页数:25
相关论文
共 50 条
  • [11] A two level finite element method for Stokes constrained Dirichlet boundary control problem
    Gudi, Thirupathi
    Sau, Ramesh Ch.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 129 : 126 - 135
  • [12] Error Estimates for Finite Element Approximation of Dirichlet Boundary Control for Stokes Equations in L2(Γ)
    Zhou, Kaiye
    Gong, Wei
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 91 (02)
  • [13] Multilevel correction goal-oriented adaptive finite element method for semilinear elliptic equations
    Xu, Fei
    Huang, Qiumei
    Yang, Huiting
    Ma, Hongkun
    APPLIED NUMERICAL MATHEMATICS, 2022, 172 : 224 - 241
  • [14] Adaptive Multilevel Correction Method for Finite Element Approximations of Elliptic Optimal Control Problems
    Gong, Wei
    Xie, Hehu
    Yan, Ningning
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 72 (02) : 820 - 841
  • [15] Adaptive Multilevel Correction Method for Finite Element Approximations of Elliptic Optimal Control Problems
    Wei Gong
    Hehu Xie
    Ningning Yan
    Journal of Scientific Computing, 2017, 72 : 820 - 841
  • [16] Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations
    Casas, Eduardo
    Raymond, Jean-Pierre
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2006, 45 (05) : 1586 - 1611
  • [17] MASS LUMPING FOR THE OPTIMAL CONTROL OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
    Roesch, Arnd
    Wachsmuth, Gerd
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (03) : 1412 - 1436
  • [18] ON THE CONVERGENCE OF ADAPTIVE STOCHASTIC COLLOCATION FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH AFFINE DIFFUSION
    EIGEL, M. A. R. T. I. N.
    ERNST, O. L. I. V. E. R. G.
    SPRUNGK, B. J. O. R. N.
    TAMELLINI, L. O. R. E. N. Z. O.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (02) : 659 - 687
  • [19] An adaptive finite element method for a linear elliptic equation with variable coefficients
    Dörfler, W
    Wilderotter, O
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 (07): : 481 - 491
  • [20] Adaptive finite element method for parabolic equations with Dirac measure
    Gong, Wei
    Liu, Huipo
    Yan, Ningning
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 328 : 217 - 241