Investigation on working fluids selection for organic rankine cycles with low-temperature heat sources

被引:17
作者
Guo, Cong [1 ,2 ]
Du, Xiaoze [1 ]
Goswami, D. Yogi [2 ]
Yang, Lijun [1 ]
机构
[1] North China Elect Power Univ, Minist Educ, Key Lab Condit Monitoring & Control Power Plant E, Beijing 102206, Peoples R China
[2] Univ S Florida, Coll Engn, Clean Energy Res Ctr, Tampa, FL USA
基金
中国国家自然科学基金;
关键词
Exergy loss; organic Rankine cycle; ruperator; working fluids; zeotropic mixtures; GRADE WASTE HEAT; PERFORMANCE ANALYSIS; ZEOTROPIC MIXTURES; PARAMETRIC OPTIMIZATION; POWER-GENERATION; DRY FLUIDS; ORC; RECOVERY; EVAPORATOR;
D O I
10.1080/15435075.2014.979491
中图分类号
O414.1 [热力学];
学科分类号
摘要
The Influence of mixed and pure working fluids on the performance of organic Rankine cycles (ORCs) is discussed. Specifically, the performance of mixed and pure working fluids is analyzed based on certain characteristics of low-temperature heat source and heat sink. A method of selecting binary zeotropic mixed working fluids that match with different heat sinks is introduced. Thermodynamic processes of ORCs for various heat sources are simulated in Matlab. The performance characteristics of pure and mixed working fluids are compared under different inlet temperatures and temperature gradients of sensible heat sources. The results demonstrate that when the initial temperature of a heat source is lower and its temperature gradient is higher, and the temperature gradient of the heat sink is higher, mixed working fluids have better performance than pure working fluids. However, for the opposite heat source and heat sink situations, pure working fluids perform better. Mixtures with low critical temperature components exhibit the best performance among all working fluids when the temperature gradient of the heat source is large. The analysis also shows that introduction of a recuperator may reduce the cycle efficiency when the heat source temperature is low and the temperature gradient of the heat source is large.
引用
收藏
页码:556 / 565
页数:10
相关论文
共 32 条
[1]   Comparative performance analysis of low-temperature Organic Rankine Cycle (ORC) using pure and zeotropic working fluids [J].
Aghahosseini, S. ;
Dincer, I. .
APPLIED THERMAL ENGINEERING, 2013, 54 (01) :35-42
[2]   Multicomponent working fluids for organic rankine cycles (ORCs) [J].
Angelino, G ;
Di Paliano, PC .
ENERGY, 1998, 23 (06) :449-463
[3]  
Angelino G, 2000, FUEL CELL SEM 2000
[4]   A review of working fluid and expander selections for organic Rankine cycle [J].
Bao, Junjiang ;
Zhao, Li .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 24 :325-342
[5]   Comparative analysis of natural and synthetic refrigerants in application to low temperature Clausius-Rankine cycle [J].
Borsukiewicz-Gozdur, Aleksandra ;
Nowak, Wladyslaw .
ENERGY, 2007, 32 (04) :344-352
[6]   Energetic and exergetic analysis of CO2- and R32-based transcritical Rankine cycles for low-grade heat conversion [J].
Chen, Huijuan ;
Goswami, D. Yogi ;
Rahman, Muhammad M. ;
Stefanakos, Elias K. .
APPLIED ENERGY, 2011, 88 (08) :2802-2808
[7]   A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power [J].
Chen, Huijuan ;
Goswami, D. Yogi ;
Rahman, Muhammad M. ;
Stefanakos, Elias K. .
ENERGY, 2011, 36 (01) :549-555
[8]   A review of thermodynamic cycles and working fluids for the conversion of low-grade heat [J].
Chen, Huijuan ;
Goswami, D. Yogi ;
Stefanakos, Elias K. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (09) :3059-3067
[9]  
Chen Y., 2006, APPL THERM ENG, V26, p[17, 2142]
[10]   Potential of zeotropic mixtures as working fluids in organic Rankine cycles [J].
Chys, M. ;
van den Broek, M. ;
Vanslambrouck, B. ;
De Paepe, M. .
ENERGY, 2012, 44 (01) :623-632