Estimating monthly PM2.5 concentrations from satellite remote sensing data, meteorological variables, and land use data using ensemble statistical modeling and a random forest approach

被引:35
作者
Chen, Chu-Chih [1 ,2 ]
Wang, Yin-Ru [1 ]
Yeh, Hung-Yi [3 ]
Lin, Tang-Huang [3 ]
Huang, Chun-Sheng [4 ]
Wu, Chang-Fu [4 ]
机构
[1] Natl Hlth Res Inst, Inst Populat Hlth Sci, Div Biostat & Bioinformat, Zhunan Township, Taiwan
[2] Kaohsiung Med Univ, Res Ctr Environm Med, Kaohsiung, Taiwan
[3] Natl Cent Univ, Ctr Space & Remote Sensing Res, Taoyuan, Taiwan
[4] Natl Taiwan Univ, Sch Publ Hlth, Inst Environm & Occupat Hlth Sci, Taipei, Taiwan
关键词
Aerosol optical depth; Generalized additive model; Inverse distance weighting; Land use regression; Leave-one-out cross-validation; AEROSOL OPTICAL DEPTH; POLLUTION; CHINA; SPACE;
D O I
10.1016/j.envpol.2021.118159
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fine particulate matter (PM2.5) is associated with various adverse health outcomes and poses serious concerns for public health. However, ground monitoring stations for PM2.5 measurements are mostly installed in populationdense or urban areas. Thus, satellite retrieved aerosol optical depth (AOD) data, which provide spatial and temporal surrogates of exposure, have become an important tool for PM2.5 estimates in a study area. In this study, we used AOD estimates of surface PM2.5 together with meteorological and land use variables to estimate monthly PM2.5 concentrations at a spatial resolution of 3 km2 over Taiwan Island from 2015 to 2019. An ensemble twostage estimation procedure was proposed, with a generalized additive model (GAM) for temporal-trend removal in the first stage and a random forest model used to assess residual spatiotemporal variations in the second stage. We obtained a model-fitting R2 of 0.98 with a root mean square error (RMSE) of 1.40 mu g/m3. The leave-one-out cross-validation (LOOCV) R2 with seasonal stratification was 0.82, and the RMSE was 3.85 mu g/m3, whereas the R2 and RMSE obtained by using the pure random forest approach produced R2 and RMSE values of 0.74 and 4.60 mu g/m3, respectively. The results indicated that the ensemble modeling approach had a higher predictive ability than the pure machine learning method and could provide reliable PM2.5 estimates over the entire island, which has complex terrain in terms of land use and topography.
引用
收藏
页数:10
相关论文
共 32 条
  • [1] The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition
    Belle, Jessica H.
    Chang, Howard H.
    Wang, Yujie
    Hu, Xuefei
    Lyapustin, Alexei
    Liu, Yang
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2017, 14 (10):
  • [2] Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches
    Brokamp, Cole
    Jandarov, Roman
    Rao, M. B.
    LeMasters, Grace
    Ryan, Patrick
    [J]. ATMOSPHERIC ENVIRONMENT, 2017, 151 : 1 - 11
  • [3] A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information
    Chen, Gongbo
    Li, Shanshan
    Knibbs, Luke D.
    Hamm, N. A. S.
    Cao, Wei
    Li, Tiantian
    Guo, Jianping
    Ren, Hongyan
    Abramson, Michael J.
    Guo, Yuming
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 636 : 52 - 60
  • [4] Air Pollution and Mortality in the Medicare Population
    Di, Qian
    Wang, Yan
    Zanobetti, Antonella
    Wang, Yun
    Koutrakis, Petros
    Choirat, Christine
    Dominici, Francesca
    Schwartz, Joel D.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2017, 376 (26) : 2513 - 2522
  • [5] Development of Land Use Regression Models for PM2.5, PM2.5 Absorbance, PM10 and PMcoarse in 20 European Study Areas; Results of the ESCAPE Project
    Eeftens, Marloes
    Beelen, Rob
    de Hoogh, Kees
    Bellander, Tom
    Cesaroni, Giulia
    Cirach, Marta
    Declercq, Christophe
    Dedele, Audrius
    Dons, Evi
    de Nazelle, Audrey
    Dimakopoulou, Konstantina
    Eriksen, Kirsten
    Falq, Gregoire
    Fischer, Paul
    Galassi, Claudia
    Grazuleviciene, Regina
    Heinrich, Joachim
    Hoffmann, Barbara
    Jerrett, Michael
    Keidel, Dirk
    Korek, Michal
    Lanki, Timo
    Lindley, Sarah
    Madsen, Christian
    Moelter, Anna
    Nador, Gizella
    Nieuwenhuijsen, Mark
    Nonnemacher, Michael
    Pedeli, Xanthi
    Raaschou-Nielsen, Ole
    Patelarou, Evridiki
    Quass, Ulrich
    Ranzi, Andrea
    Schindler, Christian
    Stempfelet, Morgane
    Stephanou, Euripides
    Sugiri, Dorothea
    Tsai, Ming-Yi
    Yli-Tuomi, Tarja
    Varro, Mihaly J.
    Vienneau, Danielle
    von Klot, Stephanie
    Wolf, Kathrin
    Brunekreef, Bert
    Hoek, Gerard
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (20) : 11195 - 11205
  • [6] Remote Sensing of Particulate Pollution from Space: Have We Reached the Promised Land?
    Hoff, Raymond M.
    Christopher, Sundar A.
    [J]. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2009, 59 (06) : 645 - 675
  • [7] Enhanced Deep Blue aerosol retrieval algorithm: The second generation
    Hsu, N. C.
    Jeong, M. -J.
    Bettenhausen, C.
    Sayer, A. M.
    Hansell, R.
    Seftor, C. S.
    Huang, J.
    Tsay, S. -C.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (16) : 9296 - 9315
  • [8] Estimating PM2.5 Concentrations in the Conterminous United States Using the Random Forest Approach
    Hu, Xuefei
    Belle, Jessica H.
    Meng, Xia
    Wildani, Avani
    Waller, Lance A.
    Strickland, Matthew J.
    Liu, Yang
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (12) : 6936 - 6944
  • [9] Incorporating satellite-derived data with annual and monthly land use regression models for estimating spatial distribution of air pollution
    Huang, Chun-Sheng
    Lin, Tang-Huang
    Hung, Hung
    Kuo, Cheng-Pin
    Ho, Chi-Chang
    Guo, Yue-Liang
    Chen, Kwang-Cheng
    Wu, Chang-Fu
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2019, 114 : 181 - 187
  • [10] Predicting monthly high-resolution PM2.5 concentrations with random forest model in the North China Plain
    Huang, Keyong
    Xiao, Qingyang
    Meng, Xia
    Geng, Guannan
    Wang, Yujie
    Lyapustin, Alexei
    Gu, Dongfeng
    Liu, Yang
    [J]. ENVIRONMENTAL POLLUTION, 2018, 242 : 675 - 683