Multiple solutions for Kirchhoff elliptic equations in Orlicz-Sobolev spaces

被引:1
作者
Wu, Shujun [1 ]
机构
[1] China Univ Petr, Coll Sci, Qingdao 266580, Peoples R China
关键词
Kirchhoff elliptic equation; Orlicz-Sobolev spaces; Orlicz function; multiple solutions; POSITIVE SOLUTIONS; R-N;
D O I
10.1186/s13661-017-0865-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the existence of solutions of the Kirchhoff elliptic equations with nonlinearity in R-N. Using the ideas developed in Orlicz spaces and the technique of variation principle, we prove that there are at least three solutions in Orlicz-Sobolev spaces.
引用
收藏
页数:13
相关论文
共 26 条
[1]   Positive solutions for a quasilinear elliptic equation of Kirchhoff type [J].
Alves, CO ;
Corrêa, FJSA ;
Ma, TF .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) :85-93
[2]  
[Anonymous], 2003, SOBOLEV SPACES
[3]  
[Anonymous], 1883, Mechanik
[4]   On some eigenvalue problem involving a non-homogeneous differential operator [J].
Aouaoui, Sami .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (10) :1421-1429
[5]   Multiplicity result for some nonlocal anisotropic equation via nonsmooth critical point theory approach [J].
Aouaoui, Sami .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (02) :532-541
[6]   KIRCHHOFF SYSTEMS WITH NONLINEAR SOURCE AND BOUNDARY DAMPING TERMS [J].
Autuori, Giuseppina ;
Pucci, Patrizia .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2010, 9 (05) :1161-1188
[7]   Multiple solutions for a nonhomogeneous Dirichlet problem in Orlicz-Sobolev spaces [J].
Cammaroto, F. ;
Vilasi, L. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (23) :11518-11527
[8]   Multiple solutions for p-Kirchhoff equations in RN [J].
Chen, Caisheng ;
Song, Hongxue ;
Xiu, Zhonghu .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 86 :146-156
[9]   Multiple solutions to the nonhomogeneous p-Kirchhoff elliptic equation with concave-convex nonlinearities [J].
Chen, Caisheng ;
Huang, Jincheng ;
Liu, Lihua .
APPLIED MATHEMATICS LETTERS, 2013, 26 (07) :754-759
[10]  
Chen S.T., 1996, Geometry of Orlicz Space