Relationship of grain size and deformation mechanism to the fracture behavior in high strength-high ductility nanostructured austenitic stainless steel

被引:54
作者
Misra, R. D. K. [1 ,2 ]
Wan, X. L. [1 ,2 ]
Challa, V. S. A. [1 ,2 ]
Somani, M. C. [3 ]
Murr, L. E. [1 ,2 ]
机构
[1] Univ Texas El Paso, Ctr Struct & Funct Mat Res & Innovat, El Paso, TX 79968 USA
[2] Univ Texas El Paso, Dept Met & Mat Engn, El Paso, TX 79968 USA
[3] Univ Oulu, Ctr Adv Steels Res, Mat Engn Lab, Oulu 90014, Finland
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2015年 / 626卷
基金
美国国家科学基金会;
关键词
Austenitic stainless steel; Grain size; Deformation mechanism; Fracture; Austenite stability; STABILITY; METALS; NANOCRYSTALLINE; MICROSTRUCTURES; FORMABILITY; INTERPLAY; TEXTURE; TI;
D O I
10.1016/j.msea.2014.12.052
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study we underscore the dependence of grain structure and deformation mechanism on the fracture behavior in a high strength-high ductility bearing nanograined/ultrafine-grained austenite stainless steel. In high strength nanograined steel, deformation twinning contributed to excellent ductility, while in the low strength coarse-grained steel, the high ductility is attained as a consequence of strain-induced martensite transformation. Interestingly, the differences in deformation mechanism of steels deformation mechanisms of steels with different grain structures but with similar elongations influenced the mode of fracture, a behavior that is governed by the change in austenite stability with grain size. The areal density of voids and their average diameter in the fracture surface also increased with increasing grain size, which ranged from 320 nm to 22 mu m. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:41 / 50
页数:10
相关论文
共 50 条
[31]   Effects of cold deformation on microstructure and mechanical behavior of a high nitrogen austenitic stainless steel [J].
Wang, Songtao ;
Yang, Ke ;
Shan, Yiyin ;
Li, Laifeng .
Jinshu Xuebao/Acta Metallurgica Sinica, 2007, 43 (07) :713-718
[32]   The impact of grain size on oxidation behavior of TP304H austenitic stainless steel at high temperature in air [J].
Wei, Wei ;
Wang, Zhiwu ;
Liu, Maolin .
MATERIALS AND COMPUTATIONAL MECHANICS, PTS 1-3, 2012, 117-119 :990-994
[33]   Deformation twinning in high-nitrogen austenitic stainless steel [J].
Lee, T.-H. ;
Oh, C.-S. ;
Kim, S.-J. ;
Takaki, S. .
ACTA MATERIALIA, 2007, 55 (11) :3649-3662
[34]   Strain hardening analysis and deformation micromechanisms in high strength-high ductility metastable duplex stainless steels: Role of sustained stacking faults in the work hardening [J].
Moallemi, Mohammad ;
Kim, Sung-Joon ;
Zarei-Hanzaki, Abbas ;
Farabi, Ehsan .
MATERIALS CHARACTERIZATION, 2023, 197
[36]   A Descriptive Model on the Grain Size Dependence of Deformation and Martensitic Transformation in Austenitic Stainless Steel [J].
Mandal, Arka ;
Morankar, Swapnil ;
Sen, Mainak ;
Samanta, Santigopal ;
Singh, Shiv Brat ;
Chakrabarti, Debalay .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2020, 51 (08) :3886-3905
[37]   Ultra-high strength martensitic 420 stainless steel with high ductility [J].
Saeidi, Kamran ;
Zapata, Daniel Leon ;
Lofaj, Frantisek ;
Kvetkova, Lenka ;
Olsen, Jon ;
Shen, Zhijian ;
Akhtar, Farid .
ADDITIVE MANUFACTURING, 2019, 29
[38]   Significant effects of grain size on mechanical response characteristics and deformation mechanisms of metastable austenitic stainless steel [J].
Sun, Guosheng ;
Zhao, Miaomiao ;
Du, Linxiu ;
Wu, Hongyan .
MATERIALS CHARACTERIZATION, 2022, 184
[39]   Achieving high strength and high ductility of austenitic steel by cold rolling and reverse annealing [J].
Niu, Gang ;
Tang, Qibo ;
Wu, Huibin ;
Gong, Na ;
Yin, Yanjun ;
Tang, Di .
MATERIALIA, 2019, 6
[40]   Grain-orientation-dependent of γ-ε-α′ transformation and twinning in a super-high-strength, high ductility austenitic Mn-steel [J].
Eskandari, M. ;
Zarei-Hanzaki, A. ;
Mohtadi-Bonab, M. A. ;
Onuki, Y. ;
Basu, R. ;
Asghari, A. ;
Szpunar, J. A. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 674 :514-528