Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts

被引:392
作者
Woldu, Abebe Reda [1 ,2 ,3 ]
Huang, Zanling [2 ,3 ]
Zhao, Pengxiang [4 ]
Hu, Liangsheng [2 ,3 ,6 ]
Astruc, Didier [5 ]
机构
[1] Bahir Dar Univ, Coll Sci, Dept Chem, Bahir Dar 79, Ethiopia
[2] Shantou Univ, Dept Chem, Shantou 515063, Guangdong, Peoples R China
[3] Shantou Univ, Key Lab Preparat & Applicat Ordered Struct Mat Gu, Shantou 515063, Guangdong, Peoples R China
[4] China Acad Engn Phys, Inst Mat, 9 Huafengxincun, Jiangyou City 621908, Sichuan, Peoples R China
[5] Univ Bordeaux, ISM, UMR CNR 5255, F-33405 Talence, France
[6] Guangdong Lab Chem & Fine Chem Ind Jieyang Ctr, Jieyang 522000, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; reduction; Oxide and halide-derived Cu nanoparticle; Low and high-index facet Cu nanocrystal; Functionalized Cu nanoparticle; Confined Cu nanoparticle; SINGLE-ATOM CATALYSTS; CARBON-DIOXIDE REDUCTION; METAL-ORGANIC FRAMEWORKS; HIGH-INDEX FACETS; ELECTROCATALYTIC REDUCTION; HYDROGEN EVOLUTION; OXIDATION-STATE; CU CATALYSTS; POLYCRYSTALLINE COPPER; SELECTIVITY CONTROL;
D O I
10.1016/j.ccr.2021.214340
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Copper has been recognized as the only heterogeneous catalyst leading to the formation of various products of hydrocarbons and oxygenates, such as ethanol and ethylene, from the electrochemical CO2 reduction reaction (CO2RR). Here, we first briefly summarize the fundamentals of CO2RR and discuss theoretical calculations related to the reaction process. We then critically review the recent advances to improve the activity and selectivity of CO2 reduction to multi-carbon (C2+) products over Cu-based nanomaterials. First, oxide and halide-derived Cu NPs are reviewed for CO2RR based on different factors including sub-surface oxides, Cu* species, and grain boundaries. Then, the low- and high-index facet Cu nanocrystals are discussed for CO2RR in detail. Under this section, we raise the question: "single or multi-facet enclosed nanocrystals for a greater CO2 reduction selectivity to C2+ products?" We also review other Cu-based nanostructures including surface-functionalized and confined Cu catalysts for CO2RR. Generally, this review aims to provide new insights and offer better comprehension of the advances and progress of the research domain. In conclusion, some outlooks are delivered on the upcoming research path of the CO2RR selectivity toward C2+ products over Cu-based catalysts. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:29
相关论文
共 266 条
[1]   Enhanced Electrocatalytic Activity of Primary Amines for CO2 Reduction Using Copper Electrodes in Aqueous Solution [J].
Abdinejad, Maryam ;
Mirza, Zainab ;
Zhang, Xiao-an ;
Kraatz, Heinz-Bernhard .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (04) :1715-+
[2]   A critical review of comparative global historical energy consumption and future demand: The story told so far [J].
Ahmad, Tanveer ;
Zhang, Dongdong .
ENERGY REPORTS, 2020, 6 :1973-1991
[3]   Confinement of Ultrasmall Cu/ZnOx Nanoparticles in Metal-Organic Frameworks for Selective Methanol Synthesis from Catalytic Hydrogenation of CO2 [J].
An, Bing ;
Zhang, Jingzheng ;
Cheng, Kang ;
Ji, Pengfei ;
Wang, Cheng ;
Lin, Wenbin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (10) :3834-3840
[4]   Band gap engineering via doping: A predictive approach [J].
Andriotis, Antonis N. ;
Menon, Madhu .
JOURNAL OF APPLIED PHYSICS, 2015, 117 (12)
[5]   The role of in situ generated morphological motifs and Cu(i) species in C2+ product selectivity during CO2 pulsed electroreduction [J].
Aran-Ais, Rosa M. ;
Scholten, Fabian ;
Kunze, Sebastian ;
Rizo, Ruben ;
Roldan Cuenya, Beatriz .
NATURE ENERGY, 2020, 5 (04) :317-325
[6]   Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements [J].
Back, Seoin ;
Lim, Juhyung ;
Kim, Na-Young ;
Kim, Yong-Hyun ;
Jung, Yousung .
CHEMICAL SCIENCE, 2017, 8 (02) :1090-1096
[7]   Electrochemical CO2 Reduction: Classifying Cu Facets [J].
Bagger, Alexander ;
Ju, Wen ;
Sofia Varela, Ana ;
Strasser, Peter ;
Rossmeisl, Jan .
ACS CATALYSIS, 2019, 9 (09) :7894-7899
[8]   Multifunctional Ti1-xTaxO2: Ta doping or alloying? [J].
Barman, A. Roy ;
Motapothula, M. ;
Annadi, A. ;
Gopinadhan, K. ;
Zhao, Y. L. ;
Yong, Z. ;
Santoso, I. ;
Ariando ;
Breese, M. ;
Rusydi, A. ;
Dhar, S. ;
Venkatesan, T. .
APPLIED PHYSICS LETTERS, 2011, 98 (07)
[9]   CO2 Electroreduction to Hydrocarbons on Carbon-Supported Cu Nanoparticles [J].
Baturina, Olga A. ;
Lu, Qin ;
Padilla, Monica A. ;
Xin, Le ;
Li, Wenzhen ;
Serov, Alexey ;
Artyushkova, Kateryna ;
Atanassov, Plamen ;
Xu, Feng ;
Epshteyn, Albert ;
Brintlinger, Todd ;
Schuette, Mike ;
Collins, Greg E. .
ACS CATALYSIS, 2014, 4 (10) :3682-3695
[10]   Surface Immobilization of Transition Metal Ions on Nitrogen-Doped Graphene Realizing High-Efficient and Selective CO2 Reduction [J].
Bi, Wentuan ;
Li, Xiaogang ;
You, Rui ;
Chen, Minglong ;
Yuan, Ruilin ;
Huang, Weixin ;
Wu, Xiaojun ;
Chu, Wangsheng ;
Wu, Changzheng ;
Xie, Yi .
ADVANCED MATERIALS, 2018, 30 (18)