Single-molecule study of oxidative enzymatic deconstruction of cellulose

被引:91
作者
Eibinger, Manuel [1 ]
Sattelkow, Juergen [2 ]
Ganner, Thomas [2 ]
Plank, Harald [2 ,3 ]
Nidetzky, Bernd [1 ,4 ]
机构
[1] Graz Univ Technol, Inst Biotechnol & Biochem Engn, Petersgasse 10-12-1, A-8010 Graz, Austria
[2] Graz Univ Technol, Inst Elect Microscopy & Nanoanal, Steyrergasse 17, A-8010 Graz, Austria
[3] Graz Ctr Electron Microscopy, Steyrergasse 17, A-8010 Graz, Austria
[4] Austrian Ctr Ind Biotechnol, Petersgasse 14, A-8010 Graz, Austria
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
关键词
LYTIC POLYSACCHARIDE MONOOXYGENASES; HYDROLYTIC EFFICIENCY; DEGRADATION; CELLULASES; SURFACE; BINDING; METALLOENZYME; MECHANISMS; CONVERSION; SUBSTRATE;
D O I
10.1038/s41467-017-01028-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
LPMO (lytic polysaccharide monooxygenase) represents a unique paradigm of cellulosic biomass degradation by an oxidative mechanism. Understanding the role of LPMO in deconstructing crystalline cellulose is fundamental to the enzyme's biological function and will help to specify the use of LPMO in biorefinery applications. Here we show with real-time atomic force microscopy that C1 and C4 oxidizing types of LPMO from Neurospora crassa (NcLPMO9F, NcLPMO9C) bind to nanocrystalline cellulose with high preference for the very same substrate surfaces that are also used by a processive cellulase (Trichoderma reesei CBH I) to move along during hydrolytic cellulose degradation. The bound LPMOs, however, are immobile during their adsorbed residence time (similar to 1.0 min for NcLPMO9F) on cellulose. Treatment with LPMO resulted in fibrillation of crystalline cellulose and strongly (>= 2-fold) enhanced the cellulase adsorption. It also increased enzyme turnover on the cellulose surface, thus boosting the hydrolytic conversion.
引用
收藏
页数:7
相关论文
共 41 条
  • [21] High Speed Atomic Force Microscopy Visualizes Processive Movement of Trichoderma reesei Cellobiohydrolase I on Crystalline Cellulose
    Igarashi, Kiyohiko
    Koivula, Anu
    Wada, Masahisa
    Kimura, Satoshi
    Penttila, Merja
    Samejima, Masahiro
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (52) : 36186 - 36190
  • [22] Mechanism of Initial Rapid Rate Retardation in Cellobiohydrolase Catalyzed Cellulose Hydrolysis
    Jalak, Juergen
    Vaeljamaee, Priit
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2010, 106 (06) : 871 - 883
  • [23] Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay
    Kittl, Roman
    Kracher, Daniel
    Burgstaller, Daniel
    Haltrich, Dietmar
    Ludwig, Roland
    [J]. BIOTECHNOLOGY FOR BIOFUELS, 2012, 5
  • [24] Extracellular electron transfer systems fuel cellulose oxidative degradation
    Kracher, Daniel
    Scheiblbrandner, Stefan
    Felice, Alfons K. G.
    Breslmayr, Erik
    Preims, Marita
    Ludwicka, Karolina
    Haltrich, Dietmar
    Eijsink, Vincent G. H.
    Ludwig, Roland
    [J]. SCIENCE, 2016, 352 (6289) : 1098 - 1101
  • [25] Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes
    Levasseur, Anthony
    Drula, Elodie
    Lombard, Vincent
    Coutinho, Pedro M.
    Henrissat, Bernard
    [J]. BIOTECHNOLOGY FOR BIOFUELS, 2013, 6
  • [26] A rapid quantitative activity assay shows that the Vibrio cholerae colonization factor GbpA is an active lytic polysaccharide monooxygenase
    Loose, Jennifer S. M.
    Forsberg, Zarah
    Fraaije, Marco W.
    Eijsink, Vincent G. H.
    Vaaje-Kolstad, Gustav
    [J]. FEBS LETTERS, 2014, 588 (18) : 3435 - 3440
  • [27] Preparation and properties of cellulose nanocrystals: Rods, spheres, and network
    Lu, Ping
    Hsieh, You-Lo
    [J]. CARBOHYDRATE POLYMERS, 2010, 82 (02) : 329 - 336
  • [28] Ion-exchange chromatographic purification and quantitative analysis of Trichoderma reesei cellulases cellobiohydrolase I, II and endoglucanase II by fast protein liquid chromatography
    Medve, J
    Lee, D
    Tjerneld, F
    [J]. JOURNAL OF CHROMATOGRAPHY A, 1998, 808 (1-2) : 153 - 165
  • [29] Cellulose nanomaterials review: structure, properties and nanocomposites
    Moon, Robert J.
    Martini, Ashlie
    Nairn, John
    Simonsen, John
    Youngblood, Jeff
    [J]. CHEMICAL SOCIETY REVIEWS, 2011, 40 (07) : 3941 - 3994
  • [30] Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions
    Muller, Gerdt
    Varnai, Aniko
    Johansen, Katja Salomon
    Eijsink, Vincent G. H.
    Horn, Svein Jarle
    [J]. BIOTECHNOLOGY FOR BIOFUELS, 2015, 8