Single-molecule study of oxidative enzymatic deconstruction of cellulose

被引:91
作者
Eibinger, Manuel [1 ]
Sattelkow, Juergen [2 ]
Ganner, Thomas [2 ]
Plank, Harald [2 ,3 ]
Nidetzky, Bernd [1 ,4 ]
机构
[1] Graz Univ Technol, Inst Biotechnol & Biochem Engn, Petersgasse 10-12-1, A-8010 Graz, Austria
[2] Graz Univ Technol, Inst Elect Microscopy & Nanoanal, Steyrergasse 17, A-8010 Graz, Austria
[3] Graz Ctr Electron Microscopy, Steyrergasse 17, A-8010 Graz, Austria
[4] Austrian Ctr Ind Biotechnol, Petersgasse 14, A-8010 Graz, Austria
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
关键词
LYTIC POLYSACCHARIDE MONOOXYGENASES; HYDROLYTIC EFFICIENCY; DEGRADATION; CELLULASES; SURFACE; BINDING; METALLOENZYME; MECHANISMS; CONVERSION; SUBSTRATE;
D O I
10.1038/s41467-017-01028-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
LPMO (lytic polysaccharide monooxygenase) represents a unique paradigm of cellulosic biomass degradation by an oxidative mechanism. Understanding the role of LPMO in deconstructing crystalline cellulose is fundamental to the enzyme's biological function and will help to specify the use of LPMO in biorefinery applications. Here we show with real-time atomic force microscopy that C1 and C4 oxidizing types of LPMO from Neurospora crassa (NcLPMO9F, NcLPMO9C) bind to nanocrystalline cellulose with high preference for the very same substrate surfaces that are also used by a processive cellulase (Trichoderma reesei CBH I) to move along during hydrolytic cellulose degradation. The bound LPMOs, however, are immobile during their adsorbed residence time (similar to 1.0 min for NcLPMO9F) on cellulose. Treatment with LPMO resulted in fibrillation of crystalline cellulose and strongly (>= 2-fold) enhanced the cellulase adsorption. It also increased enzyme turnover on the cellulose surface, thus boosting the hydrolytic conversion.
引用
收藏
页数:7
相关论文
共 41 条
  • [1] The rise and fall of innovation in biofuels
    Albers, Stevan C.
    Berklund, Annabelle M.
    Graff, Gregory D.
    [J]. NATURE BIOTECHNOLOGY, 2016, 34 (08) : 814 - 822
  • [2] Integration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradation
    Arfi, Yonathan
    Shamshoum, Melina
    Rogachev, Ilana
    Peleg, Yoav
    Bayer, Edward A.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (25) : 9109 - 9114
  • [3] Cellulose Degradation by Polysaccharide Monooxygenases
    Beeson, William T.
    Vu, Van V.
    Span, Elise A.
    Phillips, Christopher M.
    Marletta, Michael A.
    [J]. ANNUAL REVIEW OF BIOCHEMISTRY, VOL 84, 2015, 84 : 923 - 946
  • [4] Bissaro B, 2017, NAT CHEM BIOL, V13, P1123, DOI [10.1038/nchembio.2470, 10.1038/NCHEMBIO.2470]
  • [5] Protein engineering of cellulases
    Bommarius, Andreas S.
    Sohn, Minjeong
    Kang, Yuzhi
    Lee, Jay H.
    Realff, Matthew J.
    [J]. CURRENT OPINION IN BIOTECHNOLOGY, 2014, 29 : 139 - 145
  • [6] Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme
    Cannella, D.
    Mollers, K. B.
    Frigaard, N. -U.
    Jensen, P. E.
    Bjerrum, M. J.
    Johansen, K. S.
    Felby, C.
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [7] The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics
    Cantarel, Brandi L.
    Coutinho, Pedro M.
    Rancurel, Corinne
    Bernard, Thomas
    Lombard, Vincent
    Henrissat, Bernard
    [J]. NUCLEIC ACIDS RESEARCH, 2009, 37 : D233 - D238
  • [8] The Contribution of Non-catalytic Carbohydrate Binding Modules to the Activity of Lytic Polysaccharide Monooxygenases
    Crouch, Lucy I.
    Labourel, Aurore
    Walton, Paul H.
    Davies, Gideon J.
    Gilbert, Harry J.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2016, 291 (14) : 7439 - 7449
  • [9] Transient Kinetics and Rate-Limiting Steps for the Processive Cellobiohydrolase Cel7A: Effects of Substrate Structure and Carbohydrate Binding Domain
    Cruys-Bagger, Nicolaj
    Tatsumi, Hirosuke
    Ren, Guilin Robin
    Borch, Kim
    Westh, Peter
    [J]. BIOCHEMISTRY, 2013, 52 (49) : 8938 - 8948
  • [10] Mechanisms employed by cellulase systems to gain access through the complex architecture of lignocellulosic substrates
    Donohoe, Bryon S.
    Resch, Michael G.
    [J]. CURRENT OPINION IN CHEMICAL BIOLOGY, 2015, 29 : 100 - 107