Joint-characteristic Function of the First- and Second-order Polarization-mode-dispersion Vectors in Linearly Birefringent Optical Fibers

被引:0
|
作者
Lee, Jae Seung [1 ]
机构
[1] Kwangwoon Univ, Dept Elect Engn, Seoul 139701, South Korea
关键词
Polarization mode dispersion; Optical fiber; Optical fiber transmission; Optical communication; STATISTICS;
D O I
10.3807/JOSK.2010.14.3.228
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper presents the joint characteristic function of the first- and second-order polarization-mode-dispersion (PMD) vectors in installed optical fibers that are almost linearly birefringent. The joint characteristic function is a Fourier transform of the joint probability density function of these PMD vectors. We regard the random fiber birefringence components as white Gaussian processes and use a Fokker-Planck method. In the limit of a large transmission distance, our joint characteristic function agrees with the previous joint characteristic function obtained for highly of birefringent fibers. However, their differences can be noticeable for practical transmission distances.
引用
收藏
页码:228 / 234
页数:7
相关论文
共 24 条
  • [1] Derivation of the Foschini and Shepp's Joint-Characteristic Function for the First-and Second-Order Polarization-Mode-Dispersion Vectors Using the Fokker-Planck Method
    Lee, Jae-Seung
    JOURNAL OF THE OPTICAL SOCIETY OF KOREA, 2008, 12 (04) : 240 - 243
  • [2] Analysis of the polarization-mode-dispersion vector distribution for linearly birefringent optical fibers
    Lee, Jae-Seung
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2007, 19 (13-16) : 972 - 974
  • [3] Measurement of second-order polarization-mode dispersion vectors in optical fibers
    Jopson, RM
    Nelson, LE
    Kogelnik, H
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1999, 11 (09) : 1153 - 1155
  • [4] Improved optical compensator for first- and second-order polarization-mode dispersion
    Heismann, F
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (05) : 1016 - 1018
  • [5] Emulator of first- and second-order polarization-mode dispersion
    Wegmuller, M
    Demma, S
    Vinegoni, C
    Gisin, N
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2002, 14 (05) : 630 - 632
  • [6] CONTROLLED AND COMPACT FIRST- AND SECOND-ORDER POLARIZATION MODE DISPERSION EMULATOR
    dos Santos, Bessa
    Coelho, Thiago V. N.
    Silveira, Daniel D.
    Silva, Vinicius N. H.
    Lopez-Barbero, Andres P.
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2015, 57 (03) : 765 - 769
  • [7] Statistical characteristics of second-order polarization mode dispersion in optical fibers
    Wang, HX
    Ji, YF
    Qiao, YJ
    Saito, T
    APOC 2003: ASIA-PACIFIC OPTICAL AND WIRELESS COMMUNICATIONS; OPTICAL FIBERS AND PASSIVE COMPONENTS, 2003, 5279 : 264 - 273
  • [8] Independently tunable first- and second-order polarization-mode dispersion emulator
    Kim, NY
    Park, N
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (03) : 576 - 578
  • [9] Multiple importance sampling for first- and second-order polarization-mode dispersion
    Fogal, SL
    Biondini, G
    Kath, WL
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2002, 14 (09) : 1273 - 1275
  • [10] Measurement of first- to fourth-order polarization mode dispersion in optical fibers
    Dong, H.
    Shum, P.
    Tang, M.
    Gong, Y. D.
    2008 CONFERENCE ON OPTICAL FIBER COMMUNICATION/NATIONAL FIBER OPTIC ENGINEERS CONFERENCE, VOLS 1-8, 2008, : 373 - 375