Target Recognition Method for High Resolution SAR Images Based on Improved Convolutional Neural Network

被引:1
作者
Zhu, Tongyu [1 ]
Jiang, Yicheng [1 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Heilongjiang, Peoples R China
来源
COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS | 2019年 / 463卷
基金
中国国家自然科学基金;
关键词
Synthetic aperture radar (SAR); Target recognition; Convolutional neural network (CNN); Feature extraction;
D O I
10.1007/978-981-10-6571-2_274
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deep Convolutional Neural Network (CNN) has obtained state-of-the-art accuracy in many image recognition tasks. It can learn hierarchical features from massive training data automatically. Since the number of SAR images is limited, using traditional CNN in SAR target recognition will yield severe overfitting. This paper proposes an improved CNN algorithm for high resolution SAR image target recognition. The CNN algorithm is trained by images with target rotation, target translation and random noise in target. With these training data, the system should be more robust and insensitive to these target transformations. During the training, a few strategies such as L2 regularization, batch normalization and dropout are investigated to restrain overfitting. Experimental results on Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset show that the proposed method could achieve high accuracy and be more robust.
引用
收藏
页码:2243 / 2250
页数:8
相关论文
共 7 条
[1]  
Abadi M., 2015, TENSORFLOW LARGE SCA, DOI DOI 10.48550/ARXIV.1603.04467
[2]   Target Classification Using the Deep Convolutional Networks for SAR Images [J].
Chen, Sizhe ;
Wang, Haipeng ;
Xu, Feng ;
Jin, Ya-Qiu .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (08) :4806-4817
[3]   Convolutional Neural Network With Data Augmentation for SAR Target Recognition [J].
Ding, Jun ;
Chen, Bo ;
Liu, Hongwei ;
Huang, Mengyuan .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (03) :364-368
[4]   High-Resolution SAR Image Classification via Deep Convolutional Autoencoders [J].
Geng, Jie ;
Fan, Jianchao ;
Wang, Hongyu ;
Ma, Xiaorui ;
Li, Baoming ;
Chen, Fuliang .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (11) :2351-2355
[5]  
Ioffe S., 2015, P INT C MACH LEARN, P448
[6]  
King DB, 2015, ACS SYM SER, V1214, P1
[7]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90