Resonant driving of a single photon emitter embedded in a mechanical oscillator

被引:46
作者
Munsch, Mathieu [1 ]
Kuhlmann, Andreas V. [1 ]
Cadeddu, Davide [1 ]
Gerard, Jean-Michel [2 ]
Claudon, Julien [2 ]
Poggio, Martino [1 ]
Warburton, Richard J. [1 ]
机构
[1] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland
[2] Univ Grenoble Alpes, CEA, INAC, PHELIQS,Nanophys & Semicond Grp, F-38000 Grenoble, France
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
关键词
QUANTUM-DOT; MANIPULATION; CAVITY;
D O I
10.1038/s41467-017-00097-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Coupling a microscopic mechanical resonator to a nanoscale quantum system enables control of the mechanical resonator via the quantum system and vice-versa. The coupling is usually achieved through functionalization of the mechanical resonator, but this results in additional mass and dissipation channels. An alternative is an intrinsic coupling based on strain. Here we employ a monolithic semiconductor system: the nanoscale quantum system is a semiconductor quantum dot (QD) located inside a nanowire. We demonstrate the resonant optical driving of the QD transition in such a structure. The noise spectrum of the resonance fluorescence signal, recorded in the single-photon counting regime, reveals a coupling to mechanical modes of different types. We measure a sensitivity to displacement of 65 fm/root Hz limited by charge noise in the device. Finally, we use thermal excitation of the different modes to determine the location of the QD within the trumpet, and calculate the contribution of the Brownian motion to the dephasing of the emitter.
引用
收藏
页数:7
相关论文
共 37 条
  • [11] A picogram- and nanometre-scale photonic-crystal optomechanical cavity
    Eichenfield, Matt
    Camacho, Ryan
    Chan, Jasper
    Vahala, Kerry J.
    Painter, Oskar
    [J]. NATURE, 2009, 459 (7246) : 550 - U79
  • [12] He YM, 2013, NAT NANOTECHNOL, V8, P213, DOI [10.1038/nnano.2012.262, 10.1038/NNANO.2012.262]
  • [13] An artificial Rb atom in a semiconductor with lifetime-limited linewidth
    Jahn, Jan-Philipp
    Munsch, Mathieu
    Beguin, Lucas
    Kuhlmann, Andreas V.
    Renggli, Martina
    Huo, Yongheng
    Ding, Fei
    Trotta, Rinaldo
    Reindl, Marcus
    Schmidt, Oliver G.
    Rastelli, Armando
    Treutlein, Philipp
    Warburton, Richard J.
    [J]. PHYSICAL REVIEW B, 2015, 92 (24):
  • [14] Phonon cooling and lasing with nitrogen-vacancy centers in diamond
    Kepesidis, K. V.
    Bennett, S. D.
    Portolan, S.
    Lukin, M. D.
    Rabl, P.
    [J]. PHYSICAL REVIEW B, 2013, 88 (06)
  • [15] Strain-tunable quantum dot embedded in a nanowire antenna
    Kremer, P. E.
    Dada, A. C.
    Kumar, P.
    Ma, Y.
    Kumar, S.
    Clarke, E.
    Gerardot, B. D.
    [J]. PHYSICAL REVIEW B, 2014, 90 (20):
  • [16] Transform-limited single photons from a single quantum dot
    Kuhlmann, Andreas V.
    Prechtel, Jonathan H.
    Houel, Julien
    Ludwig, Arne
    Reuter, Dirk
    Wieck, Andreas D.
    Warburton, Richard J.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [17] Kuhlmann AV, 2013, NAT PHYS, V9, P570, DOI [10.1038/nphys2688, 10.1038/NPHYS2688]
  • [18] A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode
    Kuhlmann, Andreas V.
    Houel, Julien
    Brunner, Daniel
    Ludwig, Arne
    Reuter, Dirk
    Wieck, Andreas D.
    Warburton, Richard J.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (07)
  • [19] Ultrafast coherent manipulation of trions in site-controlled nanowire quantum dots
    Lagoudakis, K. G.
    McMahon, P. L.
    Dory, C.
    Fischer, K. A.
    Mueller, K.
    Borish, V.
    Dalacu, D.
    Poole, P. J.
    Reimer, M. E.
    Zwiller, V.
    Yamamoto, Y.
    Vuckovic, J.
    [J]. OPTICA, 2016, 3 (12): : 1430 - 1435
  • [20] Bit storage and bit flip operations in an electromechanical oscillator
    Mahboob, I.
    Yamaguchi, H.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (05) : 275 - 279