Almost squares and factorisations in consecutive integers

被引:31
作者
Saradha, N [1 ]
Shorey, TN [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
关键词
consecutive; diophantine equations; elliptic equations; factorisation; primes;
D O I
10.1023/A:1025480729778
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that there is no square other than 12(2) and 720(2) such that it can be written as a product of k - 1 integers out of k (greater than or equal to3) consecutive positive integers. We give an extension of a theorem of Sylvester that a product of k consecutive integers each greater than k is divisible by a prime exceeding k.
引用
收藏
页码:113 / 124
页数:12
相关论文
共 16 条
[1]  
[Anonymous], 1934, J LONDON MATH SOC
[2]   PRODUCT OF CONSECUTIVE INTEGERS IS NEVER A POWER [J].
ERDOS, P ;
SELFRIDGE, JL .
ILLINOIS JOURNAL OF MATHEMATICS, 1975, 19 (02) :292-301
[3]  
Erdos P., 1939, J LOND MATH SOC, V14, P194, DOI DOI 10.1112/JLMS/S1-14.3.194
[4]   The resolution of the diophantine equation x(x+d) ... (x+(k-1)d) = by2 for fixed d [J].
Filakovszky, P ;
Hajdu, L .
ACTA ARITHMETICA, 2001, 98 (02) :151-154
[5]   Square product of three integers in short intervals [J].
Hajdu, L ;
Pintér, A .
MATHEMATICS OF COMPUTATION, 1999, 68 (227) :1299-1301
[6]  
Herschfeld A., 1936, Bull. Am. Math. Soc, V42, P231, DOI [DOI 10.1090/S0002-9904-1936-06275-0, 10.1090/S0002-9904-1936-06275-0]
[7]  
Ribenboim P, 1994, CATALANS CONJECTURE
[8]  
Rigge O., 1939, 9 C MATH SCAND HELS, P155
[9]  
Rosser J. B., 1962, Illinois J. Math., V6, P64
[10]   Almost squares in arithmetic progression [J].
Saradha, N ;
Shorey, TN .
COMPOSITIO MATHEMATICA, 2003, 138 (01) :73-111