Monoatomic-thick graphitic carbon nitride dots on graphene sheets as an efficient catalyst in the oxygen reduction reaction

被引:90
作者
Wang, Xiaopeng [1 ]
Wang, Lixia [1 ]
Zhao, Fei [1 ]
Hu, Chuangang [1 ]
Zhao, Yang [1 ]
Zhang, Zhipan [1 ]
Chen, Shilu [1 ]
Shi, Gaoquan [2 ]
Qu, Liangti [1 ]
机构
[1] Beijing Inst Technol, Sch Chem, China Beijing Key Lab Photoelect Electrophoton Co, Key Lab Cluster Sci,Minist Educ, Beijing 100081, Peoples R China
[2] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
基金
北京市自然科学基金;
关键词
METAL-FREE ELECTROCATALYSTS; VISIBLE-LIGHT; COMPOSITE ELECTROCATALYST; HYDROGEN EVOLUTION; SINGLE-LAYERS; QUANTUM DOTS; NANOSHEETS; DENSITY; CONSTRUCTION; OXIDATION;
D O I
10.1039/c4nr05343e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Atomically thick two-dimensional materials have been increasingly attracting research interest not only due to their promising applications in a range of functional devices but also to their theoretical value to unraveling the catalytic electron transfer process within a simplified scenario. In this work, the monoatomic-thick dot-sized graphitic carbon nitride (g-C3N4) has been synthesized and intimately contacted to the basal plane of the graphene sheet to form the monolayer g-C3N4 dots@graphene (MTCG). The electrocatalytic activity of the MTCG in the oxygen reduction reaction is found to rival that of the commercial Pt/C catalyst in terms of the catalytic current density and half-wave potential. The density functional theory calculations confirm the catalytic improvement of the MTCG originates from a higher efficiency for the reduction of OOH-than that of the g-C3N4 alone; therefore, the current work is expected to provide new insights in developing next-generation, highly efficient catalysts for the oxygen reduction reaction.
引用
收藏
页码:3035 / 3042
页数:8
相关论文
共 36 条
[1]   A NEW MIXING OF HARTREE-FOCK AND LOCAL DENSITY-FUNCTIONAL THEORIES [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (02) :1372-1377
[2]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[3]   Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction [J].
Chung, Hoon T. ;
Won, Jong H. ;
Zelenay, Piotr .
NATURE COMMUNICATIONS, 2013, 4
[4]   Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution [J].
Cui, Yanjuan ;
Zhang, Jinshui ;
Zhang, Guigang ;
Huang, Jianhui ;
Liu, Ping ;
Antonietti, Markus ;
Wang, Xinchen .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (34) :13032-13039
[5]   Surface chemistry of ordered mesoporous carbons [J].
Darmstadt, H ;
Roy, C ;
Kaliaguine, S ;
Choi, SJ ;
Ryoo, R .
CARBON, 2002, 40 (14) :2673-2683
[6]   Electrochemical reduction of NO by hemin adsorbed at pyrolitic graphite [J].
de Groot, MT ;
Merkx, M ;
Wonders, AH ;
Koper, MTM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (20) :7579-7586
[7]   Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications [J].
Georgakilas, Vasilios ;
Otyepka, Michal ;
Bourlinos, Athanasios B. ;
Chandra, Vimlesh ;
Kim, Namdong ;
Kemp, K. Christian ;
Hobza, Pavel ;
Zboril, Radek ;
Kim, Kwang S. .
CHEMICAL REVIEWS, 2012, 112 (11) :6156-6214
[8]   A highly active and stable electrocatalyst for the oxygen reduction reaction based on a graphene-supported g-C3N4@cobalt oxide core-shell hybrid in alkaline solution [J].
Jin, Jutao ;
Fu, Xiaogang ;
Liu, Qiao ;
Zhang, Junyan .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (35) :10538-10545
[9]   Ordered Mesoporous Carbon Nitrides with Graphitic Frameworks as Metal-Free, Highly Durable, Methanol-Tolerant Oxygen Reduction Catalysts in an Acidic Medium [J].
Kwon, Kyungjung ;
Sa, Young Jin ;
Cheon, Jae Yeong ;
Joo, Sang Hoon .
LANGMUIR, 2012, 28 (01) :991-996
[10]   DEVELOPMENT OF THE COLLE-SALVETTI CORRELATION-ENERGY FORMULA INTO A FUNCTIONAL OF THE ELECTRON-DENSITY [J].
LEE, CT ;
YANG, WT ;
PARR, RG .
PHYSICAL REVIEW B, 1988, 37 (02) :785-789