VARIATIONAL DISCRETIZATION OF A CONTROL-CONSTRAINED PARABOLIC BANG-BANG OPTIMAL CONTROL PROBLEM

被引:6
作者
von Daniels, Nikolaus [1 ]
Hinze, Michael [1 ]
机构
[1] Univ Hamburg, Schwerpunkt Optimierung & Approximat, Bundesstrase 55, D-20146 Hamburg, Germany
关键词
Optimal control; Heat equation; Control constraints; Finite elements; A-priori error estimates; Bang-bang controls; REGULARIZATION; CONVERGENCE;
D O I
10.4208/jcm.1805-m2017-0171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a control-constrained parabolic optimal control problem without Tikhonov term in the tracking functional. For the numerical treatment, we use variational discretization of its Tikhonov regularization: For the state and the adjoint equation, we apply Petrov-Galerkin schemes in time and usual conforming finite elements in space. We prove a-priori estimates for the error between the discretized regularized problem and the limit problem. Since these estimates are not robust if the regularization parameter tends to zero, we establish robust estimates, which depending on the problem's regularity enhance the previous ones. In the special case of bang-bang solutions, these estimates are further improved. A numerical example confirms our analytical findings.
引用
收藏
页码:14 / 40
页数:27
相关论文
共 50 条
[41]   Method for solving bang-bang and singular optimal control problems using adaptive Radau collocation [J].
Elisha R. Pager ;
Anil V. Rao .
Computational Optimization and Applications, 2022, 81 :857-887
[42]   Bang-Bang Property and Singular Regimens of Optimal Control in one Mathematical Model of Treating Psoriasis [J].
E. N. Khailov .
Moscow University Computational Mathematics and Cybernetics, 2025, 49 (1) :73-79
[43]   On the computation of optimal singular and bang-bang controls [J].
Dadebo, SA ;
McAuley, KB ;
McLellan, PJ .
OPTIMAL CONTROL APPLICATIONS & METHODS, 1998, 19 (04) :287-297
[44]   MAINTENANCE OF AGE-STRUCTURED POPULATIONS: OPTIMAL CONTROL, STATE CONSTRAINTS, AND BANG-BANG REGIME [J].
Hritonenko, Natali ;
Yatsenko, Yuri .
JOURNAL OF BIOLOGICAL SYSTEMS, 2009, 17 (04) :793-816
[45]   Suboptimal periodical vs optimal bang-bang control for a certain class of the infinite dimensional systems [J].
Smieja, J ;
Swierniak, A .
PERIODIC CONTROL SYSTEMS 2001, 2002, :243-248
[46]   Method for solving bang-bang and singular optimal control problems using adaptive Radau collocation [J].
Pager, Elisha R. ;
Rao, Anil, V .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 81 (03) :857-887
[47]   Tikhonov regularization of control-constrained optimal control problems [J].
Nikolaus von Daniels .
Computational Optimization and Applications, 2018, 70 :295-320
[48]   Cost-equivalencing discretization of a class of bang-bang guidance laws [J].
Dionne, Dany ;
Michalska, Hannah .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2008, 44 (02) :643-654
[49]   The Existence of Optimal Bang-Bang Controls for GMxB Contracts [J].
Azimzadeh, P. ;
Forsyth, P. A. .
SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2015, 6 (01) :117-139
[50]   Bang-bang principle of time optimal controls and null controllability of fractional order parabolic equations [J].
Lue, Qi .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (12) :2377-2386