VARIATIONAL DISCRETIZATION OF A CONTROL-CONSTRAINED PARABOLIC BANG-BANG OPTIMAL CONTROL PROBLEM

被引:5
|
作者
von Daniels, Nikolaus [1 ]
Hinze, Michael [1 ]
机构
[1] Univ Hamburg, Schwerpunkt Optimierung & Approximat, Bundesstrase 55, D-20146 Hamburg, Germany
关键词
Optimal control; Heat equation; Control constraints; Finite elements; A-priori error estimates; Bang-bang controls; REGULARIZATION; CONVERGENCE;
D O I
10.4208/jcm.1805-m2017-0171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a control-constrained parabolic optimal control problem without Tikhonov term in the tracking functional. For the numerical treatment, we use variational discretization of its Tikhonov regularization: For the state and the adjoint equation, we apply Petrov-Galerkin schemes in time and usual conforming finite elements in space. We prove a-priori estimates for the error between the discretized regularized problem and the limit problem. Since these estimates are not robust if the regularization parameter tends to zero, we establish robust estimates, which depending on the problem's regularity enhance the previous ones. In the special case of bang-bang solutions, these estimates are further improved. A numerical example confirms our analytical findings.
引用
收藏
页码:14 / 40
页数:27
相关论文
共 50 条