Hyers-Ulam stability of coupled implicit fractional integro-differential equations with Riemann-Liouville derivatives

被引:19
作者
Alam, Mehboob [1 ]
Shah, Dildar [1 ]
机构
[1] Univ Peshawar, Dept Math, Peshawar, Khyber Pakhtunk, Pakistan
关键词
Riemann-Liouville fractional derivative; Coupled system; Hyers-Ulam stability; Hyers-Ulam-Rassias stability; BOUNDARY-VALUE-PROBLEMS; NONLINEAR DIFFERENTIAL-EQUATIONS; EXISTENCE; POINT; DELAY;
D O I
10.1016/j.chaos.2021.111122
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we investigate the existence, uniqueness, and stability of coupled implicit fractional integro-differential equations with Riemann-Liouville derivatives. We analyze the existence and uniqueness of the projected model with the help of Banach contraction principle, Schauder's fixed point theorem, and Krasnoselskii's fixed point theorem. Moreover, we present different types of stability using the classical technique of functional analysis. To illustrate our theoretical results, at the end we give an example. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] HYERS-ULAM STABILITY OF FRACTIONAL STOCHASTIC DIFFERENTIAL EQUATIONS WITH RANDOM IMPULSE
    Baleanu, Dumitru
    Kandasamy, Banupriya
    Kasinathan, Ramkumar
    Kasinathan, Ravikumar
    Sandrasekaran, Varshini
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 38 (03): : 967 - 982
  • [22] HYERS-ULAM STABILITY OF FRACTIONAL STOCHASTIC DIFFERENTIAL EQUATIONS WITH RANDOM IMPULSE
    Varshini, S.
    Banupriya, K.
    Ramkumar, K.
    Ravikumar, K.
    Baleanu, D.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2022, 91 (04): : 351 - 364
  • [23] ON HYERS-ULAM STABILITY OF NONLINEAR DIFFERENTIAL EQUATIONS
    Huang, Jinghao H
    Jung, Soon-Mo
    Li, Yongjin
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (02) : 685 - 697
  • [24] HYERS-ULAM STABILITY OF A CLASS OF FRACTIONAL LINEAR DIFFERENTIAL EQUATIONS
    Wang, Chun
    Xu, Tian-Zhou
    KODAI MATHEMATICAL JOURNAL, 2015, 38 (03) : 510 - 520
  • [25] Existence and Ulam type stability for nonlinear Riemann-Liouville fractional differential equations with constant delay
    Agarwal, Ravi
    Hristova, Snezhana
    O'Regan, Donal
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (67) : 1 - 18
  • [26] Hyers-Ulam Stability and Existence of Solutions to the Generalized Liouville-Caputo Fractional Differential Equations
    Liu, Kui
    Feckan, Michal
    Wang, Jinrong
    SYMMETRY-BASEL, 2020, 12 (06):
  • [27] Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation
    Sousa, J. Vanterler da C.
    Capelas de Oliveira, E.
    APPLIED MATHEMATICS LETTERS, 2018, 81 : 50 - 56
  • [28] Hyers-Ulam stability of a nonlinear partial integro-differential equation of order three
    Marian, Daniela
    Ciplea, Sorina Anamaria
    Lungu, Nicolaie
    OPEN MATHEMATICS, 2024, 22 (01):
  • [29] Existence, uniqueness and Hyers-Ulam stability of random impulsive stochastic integro-differential equations with nonlocal conditions
    Baleanu, Dumitru
    Kasinathan, Ramkumar
    Kasinathan, Ravikumar
    Sandrasekaran, Varshini
    AIMS MATHEMATICS, 2022, 8 (02): : 2556 - 2575
  • [30] Existence Theorems for Mixed Riemann-Liouville and Caputo Fractional Differential Equations and Inclusions with Nonlocal Fractional Integro-Differential Boundary Conditions
    Ntouyas, Sotiris K.
    Alsaedi, Ahmed
    Ahmad, Bashir
    FRACTAL AND FRACTIONAL, 2019, 3 (02) : 1 - 20