Accurate modeling of supercritical CO2 for sustainable processes: Water + CO2 and CO2 + fatty acid esters mixtures

被引:20
作者
Llovell, F. [1 ]
Vega, L. F. [1 ,2 ]
机构
[1] MATGAS Res Ctr, Barcelona 08193, Spain
[2] Carburos Met Air Prod Grp, Barcelona 08009, Spain
关键词
Modeling supercritical fluids; Crossover soft-SAFT; Phase equilibrium; Critical line; Carbon dioxide; Water; Fatty acid esters; Sustainable processes; DIRECTIONAL ATTRACTIVE FORCES; EQUATION-OF-STATE; VAPOR-LIQUID-EQUILIBRIUM; FATTY-ACID METHYL; PHASE-EQUILIBRIA; CARBON-DIOXIDE; THERMODYNAMIC PROPERTIES; RENORMALIZATION-GROUP; BINARY-MIXTURES; INTERFACIAL PROPERTIES;
D O I
10.1016/j.supflu.2014.09.040
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Supercritical fluid technology has allowed significant improvements in several industrial processes, and there are still many opportunities for further applications in new emergent areas. This contribution provides some perspectives on drivers and opportunities for new or advanced applications of supercritical fluids, including the search for sustainable processes and healthy products. It also addresses some of the needs, such as using refined modeling tools with a specific treatment taking into account the long range fluctuations in the density (or composition for the case of mixtures) as one approaches the critical point to accurately design the process in this region. New results are presented on the application of the crossover soft-SAFT equation of state to two motivating systems involving supercritical CO2, the CO2-water mixture and the solubility of supercritical CO2 in fatty acid esters. Both systems are challenging from a modeling perspective as they are highly non-ideal. Crossover soft-SAFT gives very accurate results, compared to available experimental systems, for the CO2-water mixtures. The equation is also able to predict the critical line in quantitative agreement with experimental data with one constant binary parameter, being a step forward in modeling the behavior of this mixture. The equation also gives excellent results when modeling the solubility of supercritical CO2 in fatty acid esters, with two binary parameters, independent of the temperature and composition, in this case. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:86 / 95
页数:10
相关论文
共 64 条
[61]   RENORMALIZATION-GROUP THEORY FOR FLUIDS [J].
WHITE, JA ;
ZHANG, S .
JOURNAL OF CHEMICAL PHYSICS, 1993, 99 (03) :2012-2019
[62]   RENORMALIZATION GROUP AND CRITICAL PHENOMENA .1. RENORMALIZATION GROUP AND KADANOFF SCALING PICTURE [J].
WILSON, KG .
PHYSICAL REVIEW B, 1971, 4 (09) :3174-&
[63]   CRITICAL EXPONENTS IN 3.99 DIMENSIONS [J].
WILSON, KG ;
FISHER, ME .
PHYSICAL REVIEW LETTERS, 1972, 28 (04) :240-&
[64]   Prediction of phase equilibria for CO2-C2H5OH-H2O system using the SAFT equation of state [J].
Zhang, ZY ;
Yang, JC ;
Li, YG .
FLUID PHASE EQUILIBRIA, 2000, 169 (01) :1-18