Spectral element methods on unstructured meshes: which interpolation points?

被引:24
作者
Pasquetti, Richard [1 ]
Rapetti, Francesca [1 ]
机构
[1] Univ Nice Sophia Antipolis, CNRS, UMR 6621, F-06108 Nice 02, France
关键词
Spectral elements; Simplicial meshes; Lebesgue constant; High-order interpolation; POLYNOMIAL INTERPOLATION; FEKETE POINTS;
D O I
10.1007/s11075-010-9390-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the field of spectral element approximations, the interpolation points can be chosen on the basis of different criteria, going from the minimization of the Lebesgue constant to the simplicity of the point generation procedure. In the present paper, we summarize some recent nodal distributions for a high order interpolation in the triangle. We then adopt these points as approximation points for the numerical solution of an elliptic partial differential equation on an unstructured simplicial mesh. The L (2)-norm of the approximation error is then analyzed for a model problem.
引用
收藏
页码:349 / 366
页数:18
相关论文
共 27 条
[21]  
Schwab C., 1998, p and hp-Finite element methods
[22]   Computing approximate Fekete points by QR factorizations of Vandermonde matrices [J].
Sommariva, Alvise ;
Vianello, Marco .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (08) :1324-1336
[23]  
Stieltjes, 1885, CR HEBD ACAD SCI, V100, P439
[24]  
SzabuE B., 1991, FINITE ELEM ANAL DES
[25]   An algorithm for computing Fekete points in the triangle [J].
Taylor, MA ;
Wingate, BA ;
Vincent, RE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (05) :1707-1720
[26]   A generalized diagonal mass matrix spectral element method for non-quadrilateral elements [J].
Taylor, MA ;
Wingate, BA .
APPLIED NUMERICAL MATHEMATICS, 2000, 33 (1-4) :259-265
[27]   An explicit construction of interpolation nodes on the simplex [J].
Warburton, T. .
JOURNAL OF ENGINEERING MATHEMATICS, 2006, 56 (03) :247-262