Spectral element methods on unstructured meshes: which interpolation points?

被引:24
作者
Pasquetti, Richard [1 ]
Rapetti, Francesca [1 ]
机构
[1] Univ Nice Sophia Antipolis, CNRS, UMR 6621, F-06108 Nice 02, France
关键词
Spectral elements; Simplicial meshes; Lebesgue constant; High-order interpolation; POLYNOMIAL INTERPOLATION; FEKETE POINTS;
D O I
10.1007/s11075-010-9390-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the field of spectral element approximations, the interpolation points can be chosen on the basis of different criteria, going from the minimization of the Lebesgue constant to the simplicity of the point generation procedure. In the present paper, we summarize some recent nodal distributions for a high order interpolation in the triangle. We then adopt these points as approximation points for the numerical solution of an elliptic partial differential equation on an unstructured simplicial mesh. The L (2)-norm of the approximation error is then analyzed for a model problem.
引用
收藏
页码:349 / 366
页数:18
相关论文
共 27 条
[1]  
Abramowitz M., 1972, Handbook on Mathematical Functions with Formulas, Graphs, and Mathematical Tables
[2]  
Bernardi C., 1997, Handbook of Numerical Analysis, VV
[3]   A Lobatto interpolation grid over the triangle [J].
Blyth, MG ;
Pozrikidis, C .
IMA JOURNAL OF APPLIED MATHEMATICS, 2006, 71 (01) :153-169
[4]   ON CERTAIN CONFIGURATIONS OF POINTS IN RN WHICH ARE UNISOLVENT FOR POLYNOMIAL INTERPOLATION [J].
BOS, L .
JOURNAL OF APPROXIMATION THEORY, 1991, 64 (03) :271-280
[5]  
Bos L, 2001, MATH COMPUT, V70, P1543, DOI 10.1090/S0025-5718-00-01262-X
[7]   Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle [J].
Chen, Q ;
Babuska, I .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1995, 128 (3-4) :405-417
[8]  
Deville M.O., 2002, High-Order Methods for Incompressible Fluid Flow, DOI DOI 10.1017/CBO9780511546792
[9]  
Dubiner M., 1991, Journal of Scientific Computing, V6, P345, DOI 10.1007/BF01060030
[10]  
Fejer L, 1932, ANN SCUOLA NORM SU 2, V1, P263