Approximation by a Generalization of the Jakimovski-Leviatan Operators

被引:5
作者
Ari, Didem Aydin [1 ]
Serenbay, Sevilay Kirci [2 ]
机构
[1] Kirikkale Univ, Kirikkale, Turkey
[2] Harran Univ, Sanliurfa, Turkey
关键词
Jakimovski-Leviatan operator; Lipschitz class; weighted modulus of continuity; weighted spaces; rate of convergence;
D O I
10.2298/FIL1908345A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a Kantorovich type generalization of Jakimovski-Leviatan operators constructed by A. Jakimovski and D. Leviatan (1969) and the theorems on convergence and the degree of convergence are established. Furthermore, we study the convergence of these operators in a weighted space of functions on [0, infinity).
引用
收藏
页码:2345 / 2353
页数:9
相关论文
共 20 条
[1]  
Abel U., 1999, FUNCTIONS SERIES OPE, P103
[2]   Generalized Baskakov-Szász type operators [J].
Agrawal, P.N. ;
Gupta, Vijay ;
Sathish Kumar, A. ;
Kajla, Arun .
Applied Mathematics and Computation, 2014, 236 :311-324
[3]   A Kantorovich-Stancu Type Generalization of Szasz Operators including Brenke Type Polynomials [J].
Aktas, Rabia ;
Cekim, Bayram ;
Tasdelen, Fatma .
JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
[4]  
Altomare F, 1994, KOROVKIN TYPE APPROX
[5]   Approximation Properties of Szasz Type Operators Involving Charlier Polynomials [J].
Ari, Didem Aydin .
FILOMAT, 2017, 31 (02) :479-487
[6]   Approximation by Chlodowsky type Jakimovski-Leviatan operators [J].
Buyukyazici, Ibrahim ;
Tanberkan, Hande ;
Serenbay, Sevilay Kirci ;
Atakut, Cigdem .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 :153-163
[7]   BERNSTEIN POWER SERIES [J].
CHENEY, EW ;
SHARMA, A .
CANADIAN JOURNAL OF MATHEMATICS, 1964, 16 (02) :241-&
[8]  
Chlodovsky I., 1937, Compositio Math, V4, P380
[9]  
Ciupa A., 2007, Creative Math. &Inf., V16, P13
[10]  
Ciupa A., 1996, Revue d'analyse numerique et de theorie de l'approximation, P57