Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport

被引:187
|
作者
He, QiZhi [1 ]
Barajas-Solano, David [1 ]
Tartakovsky, Guzel [2 ]
Tartakovsky, Alexandre M. [1 ]
机构
[1] Pacific Northwest Natl Lab, Richland, WA 99354 USA
[2] INTERA Inc, Richland, WA 99354 USA
关键词
Physics-informed deep neural networks; Data assimilation; Parameter estimation; Inverse problems; Subsurface flow and transport; GROUNDWATER; FLOW; ALGORITHM;
D O I
10.1016/j.advwatres.2020.103610
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Data assimilation for parameter and state estimation in subsurface transport problems remains a significant challenge because of the sparsity of measurements, the heterogeneity of porous media, and the high computational cost of forward numerical models. We present a multiphysics-informed deep neural network machine learning method for estimating space-dependent hydraulic conductivity, hydraulic head, and concentration fields from sparse measurements. In this approach, we employ individual deep neural networks (DNNs) to approximate the unknown parameters (e.g., hydraulic conductivity) and states (e.g., hydraulic head and concentration) of a physical system. Next, we jointly train these DNNs by minimizing the loss function that consists of the governing equations residuals in addition to the error with respect to measurement data. We apply this approach to assimilate conductivity, hydraulic head, and concentration measurements for the joint inversion of these parameter and states in a steady-state advection-dispersion problem. We study the accuracy of the proposed data assimilation approach with respect to the data size (i.e., the number of measured variables and the number of measurements of each variable), DNN size, and the complexity of the parameter field. We demonstrate that the physics-informed DNNs are significantly more accurate than the standard data-driven DNNs, especially when the training set consists of sparse data. We also show that the accuracy of parameter estimation increases as more different multiphysics variables are inverted jointly.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Physics-informed neural networks for diffraction tomography
    Saba, Amirhossein
    Gigli, Carlo
    Ayoub, Ahmed B.
    Psaltis, Demetri
    ADVANCED PHOTONICS, 2022, 4 (06):
  • [22] Application of physics-informed neural networks for thin liquid film flows
    Han, Qixun
    Sun, Xianhu
    Zhang, Fan
    Shao, Sujuan
    Ma, Chicheng
    FLUID DYNAMICS RESEARCH, 2025, 57 (01)
  • [23] Application of physics-informed neural networks for nonlinear buckling analysis of beams
    Bazmara, Maziyar
    Mianroodi, Mohammad
    Silani, Mohammad
    ACTA MECHANICA SINICA, 2023, 39 (06)
  • [24] Studying turbulent flows with physics-informed neural networks and sparse data
    Hanrahan, S.
    Kozul, M.
    Sandberg, R. D.
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2023, 104
  • [25] Physics-informed neural networks for consolidation of soils
    Zhang, Sheng
    Lan, Peng
    Li, Hai-Chao
    Tong, Chen-Xi
    Sheng, Daichao
    ENGINEERING COMPUTATIONS, 2022, 39 (07) : 2845 - 2865
  • [26] Physics-Informed Neural Networks for Quantum Control
    Norambuena, Ariel
    Mattheakis, Marios
    Gonzalez, Francisco J.
    Coto, Raul
    PHYSICAL REVIEW LETTERS, 2024, 132 (01)
  • [27] Robust Variational Physics-Informed Neural Networks
    Rojas, Sergio
    Maczuga, Pawel
    Munoz-Matute, Judit
    Pardo, David
    Paszynski, Maciej
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 425
  • [28] Robust Variational Physics-Informed Neural Networks
    Rojas, Sergio
    Maczuga, Pawel
    Muñoz-Matute, Judit
    Pardo, David
    Paszyński, Maciej
    Computer Methods in Applied Mechanics and Engineering, 2024, 425
  • [29] Physics-informed neural networks for periodic flows
    Shah, Smruti
    Anand, N. K.
    PHYSICS OF FLUIDS, 2024, 36 (07)
  • [30] On physics-informed neural networks for quantum computers
    Markidis, Stefano
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2022, 8