Approximation schemes associated to a differential equation governed by a Holderian function; the case of fractional Brownian movement.

被引:18
作者
Nourdin, I [1 ]
机构
[1] Univ Henri Poincare, Inst Math Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
关键词
D O I
10.1016/j.crma.2005.03.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Approximation schemes associated to a differential equation governed by a Holderian function; the case of fractional Brownian movement. We study here classical approximation schemes (Euler, Milshtein) associated with a differential equation of the type dx(t) = sigma (x(t)) dg(t) + b(x(t)) dt, x(t) is an element of R, where g is a function, supposed Holderian of order a somewhere in (0, 1]. When g = B-H is the trajectory of fractional Brownian movement, we deduce probability properties to refine the results. To cite this article: L Nourdin, C. R. Acad. Sci. Paris, Set. 1340 (2005). (c) 2005 Academie des sciences. Publie par Elsevier SAS. Tous droits reserves.
引用
收藏
页码:611 / 614
页数:4
相关论文
共 10 条