Compact Formulation for the Bias Dependent Quasi-Static Mobile Charge in Schottky-Barrier CNTFETs

被引:2
作者
Annamalai, Manojkumar [1 ]
Schroeter, Michael [1 ]
机构
[1] Tech Univ Dresden, Chair Electron Devices & Integrated Circuits CEDI, D-01069 Dresden, Germany
关键词
Electron tubes; CNTFETs; Logic gates; Integrated circuit modeling; Charge carrier density; Circuit synthesis; Three-dimensional displays; Carbon nanotube field-effect transistor; compact modeling; FET charge modeling; PART I; CARBON; MODEL;
D O I
10.1109/TNANO.2021.3116694
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Carbon nanotube (CNT) field-effect transistors (FETs) are promising candidates for future high-frequency (HF) system-on-chip applications. Understanding and modeling mobile charge storage on CNTs is therefore essential for device optimization and circuit design. A physics-based compact analytical formulation is presented that enables an accurate approximation of the mobile charge in Schottky-barrier CNTFETs over the practically relevant bias range for HF circuit design. The formulation is C-infinity continuous and yields accurate results also for the capacitances. The new formulation has been verified for both ballistic and scattering dominated carrier transport by employing device simulation, which was calibrated to experimental data from multi-tube CNTFETs
引用
收藏
页码:754 / 760
页数:7
相关论文
共 25 条
[1]   Review of Electronics Based on Single-Walled Carbon Nanotubes [J].
Cao, Yu ;
Cong, Sen ;
Cao, Xuan ;
Wu, Fanqi ;
Liu, Qingzhou ;
Amer, Moh. R. ;
Zhou, Chongwu .
TOPICS IN CURRENT CHEMISTRY, 2017, 375 (05)
[2]   Radio Frequency Transistors Using Aligned Semiconducting Carbon Nanotubes with Current-Gain Cutoff Frequency and Maximum Oscillation Frequency Simultaneously Greater than 70 GHz [J].
Cao, Yu ;
Brady, Gerald J. ;
Gui, Hui ;
Rutherglen, Chris ;
Arnold, Michael S. ;
Zhou, Chongwu .
ACS NANO, 2016, 10 (07) :6782-6790
[3]   COOS: a wave-function based Schrodinger-Poisson solver for ballistic nanotube transistors [J].
Claus, Martin ;
Mothes, Sven ;
Blawid, Stefan ;
Schroeter, Michael .
JOURNAL OF COMPUTATIONAL ELECTRONICS, 2014, 13 (03) :689-700
[4]   Measurements on quantum capacitance of individual single walled carbon nanotubes [J].
Dai, Junfeng ;
Li, Jun ;
Zeng, Hualing ;
Cui, Xiaodong .
APPLIED PHYSICS LETTERS, 2009, 94 (09)
[5]   A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application - Part I: Model of the intrinsic channel region [J].
Deng, Jie ;
Wong, H. -S. Philip .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (12) :3186-3194
[6]   Towards an optimal contact metal for CNTFETs [J].
Fediai, Artem ;
Ryndyk, Dmitry A. ;
Seifert, Gotthard ;
Mothes, Sven ;
Claus, Martin ;
Schroeter, Michael ;
Cuniberti, Gianaurelio .
NANOSCALE, 2016, 8 (19) :10240-10251
[7]   CNTFET Technology for RF Applications: Review and Future Perspective [J].
Hartmann, Martin ;
Hermann, Sascha ;
Marsh, Phil F. ;
Rutherglen, Christopher ;
Wang, Dawei ;
Ding, Li ;
Peng, Lian-Mao ;
Claus, Martin ;
Schroter, Michael .
IEEE JOURNAL OF MICROWAVES, 2021, 1 (01) :275-287
[8]   Modern microprocessor built from complementary carbon nanotube transistors [J].
Hills, Gage ;
Lau, Christian ;
Wright, Andrew ;
Fuller, Samuel ;
Bishop, Mindy D. ;
Srimani, Tathagata ;
Kanhaiya, Pritpal ;
Ho, Rebecca ;
Amer, Aya ;
Stein, Yosi ;
Murphy, Denis ;
Arvind ;
Chandrakasan, Anantha ;
Shulaker, Max M. .
NATURE, 2019, 572 (7771) :595-+
[9]   Measurement of the quantum capacitance of interacting electrons in carbon nanotubes [J].
Ilani, S. ;
Donev, L. A. K. ;
Kindermann, M. ;
McEuen, P. L. .
NATURE PHYSICS, 2006, 2 (10) :687-691
[10]   Numerically Efficient Modeling of CNT Transistors With Ballistic and Nonballistic Effects for Circuit Simulation [J].
Kazmierski, Tom J. ;
Zhou, Dafeng ;
Al-Hashimi, Bashir M. ;
Ashburn, Peter .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2010, 9 (01) :99-107